Cilastatin reduces cisplatin-induced nephrotoxicity, which is associated with decreased inflammation in vivo. Although the exact role of decreased inflammation in nephroprotection has not been fully elucidated, treatment with cilastatin could be a novel strategy for the prevention of cisplatin-induced acute kidney injury.
Gentamicin is a used antibiotic that causes nephrotoxicity in 10–20% of treatment periods, which limits its use considerably. Our results have shown that cilastatin may be a promising therapeutic alternative in toxin-induced acute kidney injury (AKI). Here, we investigated its potential use as a nephroprotector against gentamicin-induced AKI in vitro and in vivo. Porcine renal cells and rats were treated with gentamicin and/or cilastatin. In vivo nephrotoxicity was analyzed by measuring biochemical markers and renal morphology. Different apoptotic, oxidative and inflammatory parameters were studied at cellular and systemic levels. Megalin, mainly responsible for the entry of gentamicin into the cells, was also analyzed. Results show that cilastatin protects cells from gentamicin-induced AKI. Cilastatin decreased creatinine, BUN, kidney injury molecule-1 (KIM-1) and severe morphological changes previously increased by gentamicin in rats. The interference of cilastatin with lipid rafts cycling leads to decreased expression of megalin, and therefore gentamicin uptake and myeloid bodies, resulting in a decrease of apoptotic, oxidative and inflammatory events. Moreover, cilastatin did not prevent bacterial death by gentamicin. Cilastatin reduced gentamicin-induced AKI by preventing key steps in the amplification of the damage, which is associated to the disruption of megalin-gentamicin endocytosis. Therefore, cilastatin might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced AKI in the clinical setting.
Cisplatin is one of the most widely used chemotherapeutic agents in oncology, although its nephrotoxicity limits application and dosage. We present the results of a clinical study on prophylaxis of cisplatin-induced nephrotoxicity in patients with peritoneal carcinomatosis undergoing cytoreduction and hyperthermic intraperitoneal intraoperative chemotherapy (HIPEC-cisplatin). Prophylaxis was with imipenem/cilastatin. Cilastatin is a selective inhibitor of renal dehydropeptidase I in the proximal renal tubule cells that can reduce the nephrotoxicity of cisplatin. Unfortunately, cilastatin is not currently marketed alone, and can only be administered in combination with imipenem. The study has a retrospective part that serves as a control (n = 99 patients receiving standard surgical prophylaxis) and a prospective part with imipenem/cilastatin prophylaxis corresponding to the study group (n = 85 patients). In both groups, we collected specific data on preoperative risk factors of renal damage, fluid management, hemodynamic control, and urine volume during surgery (including the hyperthermic chemotherapy perfusion), as well as data on hemodynamic and renal function during the first seven days after surgery. The main finding of the study is that cilastatin may exert a nephroprotective effect in patients with peritoneal carcinomatosis undergoing cytoreduction and hyperthermic intraperitoneal cisplatin perfusion. Creatinine values remained lower than in the control group (ANOVA test, p = 0.037). This translates into easier management of these patients in the postoperative period, with significantly shorter intensive care unit (ICU) and hospital stay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.