A new myositis-specific autoantibody directed against melanoma differentiation-associated gene 5 (anti-MDA5) has been described in patients with dermatomyositis (DM). We report the clinical characteristics of patients with anti-MDA5 in a large Mediterranean cohort of DM patients from a single center, and analyze the feasibility of detecting this autoantibody in patient sera using new assays with commercially available recombinant MDA5. The study included 117 white adult patients with DM, 15 (13%) of them classified as clinically amyopathic dermatomyositis (CADM). Clinical manifestations were analyzed, with special focus on interstitial lung disease and its severity. Determination of anti-MDA5 antibodies was performed by a new ELISA and immunoblot technique. In sera, from 14 (12%) DM patients (8 CADM), MDA5 was recognized by ELISA, and confirmed by immunoblot. Eight of the 14 anti-MDA5-positive patients (57.14%) presented rapidly-progressive interstitial lung disease (RP-ILD) versus 3 of 103 anti-MDA5-negative patients (2.91%) (P < 0.05; OR: 44.4, 95% CI 9.3–212). The cumulative survival rate was significantly lower in anti-MDA5-positive patients than in the remainder of the series (P < 0.05). Patients with anti-MDA5-associated ILD presented significantly lower 70-month cumulative survival than antisynthetase-associated ILD patients. Among the cutaneous manifestations, only panniculitis was significantly associated with the presence of anti-MDA5 antibodies (P < 0.05; OR: 3.85, 95% CI 1.11–13.27). These findings support the reliability of using commercially available recombinant MDA5 for detecting anti-MDA5 antibodies and confirm the association of these antibodies with RP-ILD in a large series of Mediterranean patients with DM.
Introduction Musculoskeletal manifestations are well-recognized side effects of treatment with statins. New advances in this field have appeared in recent years. This review focuses on the diagnosis of these conditions and their underlying pathogenesis, in particular immune-mediated necrotizing myopathy. Areas covered Clinical phenotypes including rhabdomyolysis, myalgia and/or mild hyperCKemia, self-limited toxin statin myopathy, and immune-mediated necrotizing myopathy are herein described. Therapeutic recommendations and a diagnostic algorithm in statin-associated myopathy are also proposed. The etiology and pathogenesis of statin-induced myopathy has mainly focused on the anti-HMGCR antibodies and the responsibility of the immune-mediated necrotizing myopathy is discussed. The fact that patients who have not been exposed to statins may develop statin-associated autoimmune myopathy with anti-HMGCR antibodies is also addressed. The literature search strategy included terms identified by searches of PubMed between 1969 and December 2017. The search terms ‘myositis’, ‘statin-induced autoimmune myopathy’, ‘immunemediate necrotizing myopathy’, ‘statins’, ‘muscular manifestations’, and ‘anti-HMGCR antibodies’ were used. Expert commentary Full characterization of the known phenotypes of statin toxicity and the specific role of the anti-HMGCR in those exposed and not exposed (i.e. juvenile forms) to statins and in some types of neoplasms is of paramount relevance.
A subtype of phenylalanine hydroxylase (PAH) deficiency that responds to cofactor (tetrahydrobiopterin, BH4) supplementation has been associated with phenylketonuria (PKU) mutations. The underlying molecular mechanism of this responsiveness is as yet unknown and requires a detailed in vitro expression analysis of the associated mutations. With this aim, we optimized the analysis of the kinetic and cofactor binding properties in recombinant human PAH and in seven mild PKU mutations, i.e., c.194T>C (p.I65T), c.204A>T (p.R68S), c.731C>T (p.P244L), c.782G>A (p.R261Q), c.926C>T (p.A309V), c.1162G>A (p.V388M), and c.1162G>A (p.Y414C) expressed in E. coli. For p.I65T, p.R68S, and p.R261Q, we could in addition study the equilibrium binding of BH4 to the tetrameric forms by isothermal titration calorimetry (ITC). All the mutations resulted in catalytic defects, and p.I65T, p.R68S, p.P244L, and most probably p.A309V, showed reduced binding affinity for BH4. The possible stabilizing effect of the cofactor was explored using a cell-free in vitro synthesis assay combined with pulse-chase methodology. BH4 prevents the degradation of the proteins of folding variants p.A309V, p.V388M, and p.Y414C, acting as a chemical chaperone. In addition, for wild-type PAH and all mild PKU mutants analyzed in this study, BH4 increases the PAH activity of the synthesized protein and protects from the rapid inactivation observed in vitro. Catalase and superoxide dismutase partially mimic this protection. All together, our results indicate that the response to BH4 substitution therapy by PKU mutations may have a multifactorial basis. Both effects of BH4 on PAH, i.e., the chemical chaperone effect preventing protein misfolding and the protection from inactivation, may be relevant mechanisms of the responsive phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.