The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.
Objectives Propolis is a honeybee product used extensively in traditional medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer effects. Propolis exhibits a broad spectrum of biological activities because it is a complex mixture of natural substances. In this review, the antitumour effects of propolis extracts and its constituents (e.g. flavonoids, terpenes and caffeic acid phenethyl ester) are discussed. Key findings The effect of propolis on experimental carcinogenesis is discussed, as well as its possible mechanisms of action against tumours, involving apoptosis, cell cycle arrest and interference on metabolic pathways. Propolis seems to be efficient against different tumour cells both in vitro and in vivo, which suggests its potential in the development of new anticancer drugs. Summary Propolis extracts may be important economically and would allow a relatively inexpensive cancer treatment. Preclinical investigations are needed to further elucidate the benefits of propolis and its antitumour properties.
It is well known that the etiology of human breast cancer is significantly affected by environmental factors. Virus-associated cancer refers to a cancer where viral infection results in the malignant transformation of the host's infected cells. Human papillomaviruses (HPV), mouse mammary tumor virus (MMTV) and Epstein-Barr (EBV) virus are prime candidate viruses as agents of human breast cancer. The precise role that viruses play in tumorigenesis is not clear, but it seems that they are responsible for causing only one in a series of steps required for cancer development. The idea that a virus could cause breast cancer has been investigated for quite some time, even though breast cancer could be a hereditary disease; however, hereditary breast cancer is estimated to account for a small percentage of all breast cancer cases. Based on current research, this review present at moment, substantial, but not conclusive, evidence that HPV, EBV and MMTV may be involved in breast cancer.
Current understanding of the role of several cancer risk factors is more comprehensive, as reported for a number of sites, including the brain, colon, breasts, and ovaries. Despite such advances, the incidence of breast cancer continues to increase worldwide. Signals from the microenviroment have a profound influence on the maintenance or progression cancers. Although T cells present the most important immunological response in tumor growth in the early stages of cancer, they become suppressive CD4(+) and CD8(+) regulatory T cells (Tregs) after chronic stimulation and interactions with tumor cells, thus promoting rather than inhibiting cancer development and progression. Tregs have an important marker protein which is FoxP3, though it does not necessarily confer a Treg phenotype when expressed in CD4(+) T lymphocytes. High Treg levels have been reported in peripheral blood, lymph nodes, and tumor specimens from patients with different types of cancer. The precise mechanisms by which Tregs suppress immune cell functions remain unclear, and there are reports of both direct inhibition through cell-cell contact and indirect inhibition through the secretion of anti-inflammatory mediators such as interleukin. In this review, we present the molecular and immunological aspects of Treg cells in the metastasis of breast cancer.
Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.