Cell invasion by Trypanosoma cruzi and its intracellular replication are essential for continuation of the parasite life cycle and for production of Chagas' disease. T. cruzi is able to replicate in nucleated cells and can be killed by activated macrophages. Gamma interferon (IFN-␥) is one of the major stimuli for the activation of macrophages and has been shown to be a key activation factor for the killing of intracellular parasites through a mechanism dependent upon nitric oxide (NO) biosynthesis. We show that although the addition of exogenous tumor necrosis factor alpha (TNF-␣) does not potentiate the trypanocidal activity of IFN-␥ in vitro, treatment of resistant C57BI/6 mice with an anti-TNF-␣ monoclonal antibody increased parasitemia and mortality. In addition, the anti-TNF-␣-treated animals had decreased NO production, both in vivo and in vitro, suggesting an important role for TNF-␣ in controlling infection. In order to better understand the role of TNF-␣ in the macrophage-mediating killing of parasites, cultures of T. cruzi-infected macrophages were treated with an anti-TNF-␣ monoclonal antibody. IFN-␥-activated macrophages failed to kill intracellular parasites following treatment with 100 g of anti-TNF-␣. In these cultures, the number of parasites released at various time points after infection was significantly increased while NO production was significantly reduced. We conclude that IFN-␥-activated macrophages produce TNF-␣ after infection by T. cruzi and suggest that this cytokine plays a role in amplifying NO production and parasite killing.
Host resistance to infection by Trypanosoma cruzi is dependent on both natural and acquired immune responses. During the first week of infection in mice, NK cell-derived gamma interferon (IFN-␥) is involved in controlling intracellular parasite replication, mainly through the induction of NO biosynthesis by activated macrophages. Interleukin-12 (IL-12) has been shown to be a powerful cytokine in inducing IFN-␥ synthesis by NK cells, as well as in mediating resistance to different intracellular protozoa. We have therefore studied the ability of T. cruzi to elicit IL-12 synthesis by macrophages and the role of this cytokine in controlling parasite replication during acute infection in mice. Our results show that macrophages cultured in the presence of live trypomastigote forms (but not epimastigotes) release IL-12 that can induce IFN-␥ production by normal spleen cells. IL-12 was detected in as little as 12 h after the addition of the trypomastigotes, and the level of IL-12 peaked at 48 h after the initial macrophage-parasite incubation. The addition of anti-IL-12 monoclonal antibody to macrophage-trypomastigote supernatants dose-dependently inhibited IFN-␥ production by naive splenocytes. Finally, the in vivo role of IL-12 in resistance to infection by T. cruzi was analyzed. Mice treated with anti-IL-12 monoclonal antibody had significantly increased parasitemia and mortality in comparison with those of control infected mice treated with control antibody. Together, these results suggest that macrophagederived IL-12 plays a major role in controlling the parasitemia in T. cruzi-infected mice and that the animal's resistance during the acute phase of infection may, at least in part, be a consequence of postinfection levels of IL-12.
We present here the sequence of the mitochondrial DNA of the pathogenic thermodimorphic fungus Paracoccidioides brasiliensis, agent of an endemic disease in most South American countries. The sequenced genome has 71 334 bp and is organized as a circular molecule with two gaps of unknown size flanking the middle exon of the nad5 gene. We located genes coding for the three subunits of the ATP synthase (atp6, atp8 and atp9 ), the apocytochrome b (cob), three subunits of the cytochrome c oxidase enzyme complex (cox1, cox2 and cox3 ), seven subunits of the reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase (nad1, nad2, nad3, nad4, nad5, nad6 and nad4L) and the large (rnl ) and small (rns) subunits of ribosomal RNA. Two maturases and a ribosomal protein (rms5 ) are located inside introns. Twenty-five tRNAs were identified with acceptors for all 20 amino acids. Seven polypurine/polypyrimidine tracts (140-240 bp) have been found in this genome. All genes are in the same orientation over the genome, while their order is closest to the mitochondrial genomes from Penicillium marneffei and Aspergillus nidulans. This sequence is available under GenBank Accession No. AY955840.
Liver fibrosis is characterized by excessive accumulation of extracellular matrix components in the liver parenchyma that distorts the normal architecture and hepatic function. Progressive fibrosis could end in the advanced stage known as cirrhosis, resulting in the need to resort to liver transplantation. Amniotic membrane (AM) has emerged as an innovative therapeutic approach for chronic liver diseases due to its anti-inflammatory, antiscarring, and wound-healing effects. We have recently shown that AM can be used as a patch on the liver surface at the same time of fibrosis induction, resulting in significantly reduced progression and severity of biliary fibrosis. Here we investigated the effects of human AM on the established rat model of liver fibrosis, induced by the bile duct ligation (BDL). We also explored the effect of AM on the expression of transforming growth factor-1 (TGF-1), the main profibrogenic factor in hepatic fibrosis, and the proinflammatory cytokines, tumor necrosis factor- (TNF-), interleukin-6 (IL-6), and anti-inflammatory cytokine IL-10. Two weeks after BDL, the liver was covered with a fragment of AM or left untreated. Six weeks later, the fibrosis was first assessed by the semiquantitative Knodell and the METAVIR scoring systems and, thereafter, by CellProfiler digital image analysis to quantify the area occupied by collagen deposition, ductular reactions (DRs), activated myofibroblasts, and TGF-1. The hepatic cytokines were determined by ELISA. AM-treated rats showed a significantly lower score compared to the control BDL rats (2.50.9 vs. 3.50.3, respectively; p0.05). The collagen deposition, DRs, number of activated myofibroblasts, and TGF-1 were all reduced to about 50% of levels observed in untreated BDL rats. These findings suggest that AM, when applied as a patch onto the liver surface, is useful for treating well-established cholestatic fibrosis, and the mechanism was partly by means of downregulating the profibrotic factor TGF-1 and IL-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.