A family of monomers, including 2,5-hexandiol, 2,7-octandiol, 2,5-furandicarboxylic acid (FDCA), terephthalic acid (TA), and branched-chain adipic and pimelic acid derivatives, all find a common derivation in the biomass-derived platform molecule 5-(chloromethyl)furfural (CMF). The diol monomers, previously little known to polymer chemistry, have been combined with FDCA and TA derivatives to produce a range of novel polyesters. It is shown that the use of secondary diols leads to polymers with higher glass transition temperatures (T) than those prepared from their primary diol equivalents. Two methods of polymerisation were investigated, the first employing activation of the aromatic diacids via the corresponding diacid chlorides and the second using a transesterification procedure. Longer chain diols were found to be more reactive than the shorter chain alternatives, generally giving rise to higher molecular weight polymers, an effect shown to be most pronounced when using the transesterification route. Finally, novel diesters with high degrees of branching in their hydrocarbon chains are introduced as potential monomers for possible low surface energy materials applications.
Crossover recombination is essential for accurate chromosome segregation during meiosis. The MutSγ-complex, Msh4-Msh5, facilitates crossing over by binding and stabilizing nascent recombination intermediates. We show that these activities are governed by regulated proteolysis. MutSγ is initially inactive for crossing over due to an N-terminal degron on Msh4 that renders it unstable by directly targeting proteasomal degradation. Activation of MutSγ requires the Dbf4dependent kinase, Cdc7 (DDK), which directly phosphorylates and thereby neutralizes the Msh4 degron. Genetic requirements for Msh4 phosphorylation indicate that DDK targets MutSγ only after it has bound to nascent JMs in the context of synapsing chromosomes. Overexpression studies confirm that the steady-state level of Msh4, not phosphorylation perse, is the critical determinant for crossing over. At the DNA level, Msh4 phosphorylation enables the formation and crossover-biased resolution of double-Holliday Junction intermediates. Our study establishes regulated protein degradation as a fundamental mechanism underlying meiotic crossing over.
Electrolysis of biomass‐derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C6 for biofuels and renewable materials production. Kolbe coupling of biomass‐derived levulinic acid is used to obtain 2,7‐octanedione, a new platform molecule only two low process‐intensity steps removed from raw biomass. Hydrogenation to 2,7‐octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high‐octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid‐derived methylsuccinic monoester yields a chiral 2,5‐dimethyladipic acid diester, another underutilized monomer owing to lack of availability.
The MutSγ complex, Msh4-Msh5, binds DNA joint-molecule (JM) intermediates during homologous recombination to promote crossing over and accurate chromosome segregation at the first division of meiosis. MutSγ facilitates the formation and biased resolution of crossoverspecific JM intermediates called double Holliday junctions. Here we show that these activities are governed by regulated proteasomal degradation. MutSγ is initially inactive for crossing over due to an N-terminal degron on Msh4 that renders it unstable. Activation of MutSγ requires the Dbf4-dependent kinase, Cdc7 (DDK), which directly phosphorylates and thereby neutralizes the Msh4 degron. Phosphorylated Msh4 is chromatin bound and requires DNA strand exchange and chromosome synapsis, implying that DDK specifically targets MutSγ that has already bound nascent JMs. Our study establishes regulated protein degradation as a fundamental mechanism underlying meiotic crossover control. the differentiation of crossover sites manifests as the selective retention and accumulation of specific recombination factors. One such factor is MutSγ, a heterodimer of Msh4 and Msh5, two homologs of the DNA mismatch-recognition factor MutS (Manhart and Alani, 2016;Snowden et al., 2004). Msh4 and Msh5 are members the ZMM proteins (Zip1, Zip2, Zip3, Zip4, Msh4, Msh5, Mer3, and Spo16), a diverse set of activities that facilitate crossover-specific events of recombination, and couple these events to chromosome synapsis (Fung et al., 2004;Hunter, 2015;Lynn et al., 2007;Shinohara et al., 2008). As seen in a variety of species, initial numbers of MutSγ immunostaining foci greatly outnumber final crossover numbers (De Muyt et al., 2014; de Vries et al., 1999;Edelmann et al., 1999;Higgins et al., 2008;Kneitz et al., 2000;Yokoo et al., 2012;Zhang et al., 2014). As prophase I progresses, MutSγ is lost from most recombination sites but retained at sites that will go on to mature into crossovers. This patterning process is dependent on the Zip3/RNF212/ZHP-3/HEI10 family of RING E3 ligases (Agarwal and Roeder, Wang et al., 2012;Yokoo et al., 2012;Zhang et al., 2018). Additional evidence implicates the SUMO-modification and ubiquitin-proteasome systems in meiotic crossover control (Ahuja et al., 2017; Rao et al., 2017) and suggests a model in which factors such as MutSγ are selectively stabilized at crossover sites by protecting them from proteolysis. Implicit in this model is the notion that MutSγ may be intrinsically unstable.Here, we show that regulated proteolysis plays a direct and essential role in meiotic crossing over. Msh4 is identified as an intrinsically unstable protein that is targeted for proteasomal degradation by an N-terminal degron thereby rendering MutSγ inactive for crossing over. Activation of MutSγ occurs by neutralizing the Msh4 degron via Cdc7-catalyzed phosphorylation. Thus, a key meiotic pro-crossover factor is activated by attenuating its proteolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.