This work aimed at measuring cell-killing effectiveness of monoenergetic and Spread-Out Bragg Peak (SOBP) carbon-ion beams in normal and tumour cells with different radiation sensitivity. Clonogenic survival was assayed in normal and tumour human cell lines exhibiting different radiosensitivity to X- or gamma-rays following exposure to monoenergetic carbon-ion beams (incident LET 13-303 keV/microm) and at various positions along the ionization curve of a therapeutic carbon-ion beam, corresponding to three dose-averaged LET (LET(d)) values (40, 50 and 75 keV/microm). Chinese hamster V79 cells were also used. Carbon-ion effectiveness for cell inactivation generally increased with LET for monoenergetic beams, with the largest gain in cell-killing obtained in the cells most radioresistant to X- or gamma-rays. Such an increased effectiveness in cells less responsive to low LET radiation was found also for SOBP irradiation, but the latter was less effective compared with monoenergetic ion beams of the same LET. Our data show the superior effectiveness for cell-killing exhibited by carbon-ion beams compared to lower LET radiation, particularly in tumour cells radioresistant to X- or gamma-rays, hence the advantage of using such beams in radiotherapy. The observed lower effectiveness of SOBP irradiation compared to monoenergetic carbon beam irradiation argues against the radiobiological equivalence between dose-averaged LET in a point in the SOBP and the corresponding monoenergetic beams.
DNA repair systems and cell cycle checkpoints closely co-operate in the attempt of maintaining the genomic integrity of cells damaged by ionizing radiation. DNA double-strand breaks (DSB) are considered as the most biologically important radiation-induced damage. Their spatial distribution and association with other types of damage depend on radiation quality. It is believed these features affect damage reparability, thus explaining the higher efficiency for cellular effects of densely ionizing radiation with respect to gamma-rays. DSB repair systems identified in mammalian cells are homologous recombination (HR), single-strand annealing (SSA) and non-homologous end-joining (NHEJ). Some enzymes may participate in more than one of these repair systems. DNA damage also triggers biochemical signals activating checkpoints responsible for delay in cell cycle progression that allows more time for repair. Those at G1/S and S phases prevent replication of damaged DNA and those at G2/M phase prevent segregation of changed chromosomes. Individuals with lack or alterations of genes involved in DNA DSB repair and cell cycle checkpoints exhibit syndromes characterized by genome instability and predisposition to cancer. Information reviewed in this paper on the basic mechanisms of cellular response to ionizing radiation indicates their importance for a number of issues relevant to protection of astronauts from space radiation.
Previously we reported that yeast and Chinese hamster V79 cells cultured under reduced levels of background environmental ionizing radiation show enhanced susceptibility to damage caused by acute doses of genotoxic agents. Reduction of environmental radiation dose rate was achieved by setting up an underground laboratory at Laboratori Nazionali del Gran Sasso, central Italy. We now report on the extension of our studies to a human cell line. Human lymphoblastoid TK6 cells were maintained under identical in vitro culture conditions for six continuous months, at different environmental ionizing radiation levels. Compared to "reference" environmental radiation conditions, we found that cells cultured in the underground laboratories were more sensitive to acute exposures to radiation, as measured both at the level of DNA damage and oxidative metabolism. Our results are compatible with the hypothesis that ultra-low dose rate ionizing radiation, i.e. environmental radiation, may act as a conditioning agent in the radiation-induced adaptive response.
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible “beneficial” effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.