Antibiotic-resistant isolates of Salmonella enterica were selected on plates containing lethal concentrations of rifampicin, kanamycin, and nalidixic acid. The stability of the resistance phenotype was scored after nonselective growth. Rifampicin-resistant (Rif r ) isolates were stable, suggesting that they had arisen by mutation. Mutations in the rpoB gene were detected indeed in Rif r mutants. In contrast, a fraction of kanamycin-resistant (Km r ) and nalidixic acid-resistant (Nal r ) isolates showed reduced resistance after nonselective growth, suggesting that mechanisms other than mutation had contributed to bacterial survival upon lethal selection. Single-cell analysis revealed heterogeneity in expression of the porin gene ompC, and subpopulation separation provided evidence that reduced ompC expression confers adaptive resistance to kanamycin. In the case of Nal r isolates, mutations in the gyrA gene were present in most nalidixic acid-resistant isolates. However, the efflux pump inhibitor Phe-Arg-β-naphtylamide (PAβN) reduced the level of resistance in Nal r mutants, indicating that active efflux contributes to the overall level of nalidixic acid resistance. Heterogeneous efflux pump activity was detected in single cells and colonies, and a correlation between high efflux and increased resistance to nalidixic acid was found. These observations suggest that fluctuations in the expression and the activity of critical functions of the bacterial cell, alone or combined with mutations, can contribute to adaptive resistance to antibiotics.
The Salmonella enterica opvAB operon is a horizontally-acquired locus that undergoes phase variation under Dam methylation control. The OpvA and OpvB proteins form intertwining ribbons in the inner membrane. Synthesis of OpvA and OpvB alters lipopolysaccharide O-antigen chain length and confers resistance to bacteriophages 9NA (Siphoviridae), Det7 (Myoviridae), and P22 (Podoviridae). These phages use the O-antigen as receptor. Because opvAB undergoes phase variation, S. enterica cultures contain subpopulations of opvAB
OFF and opvAB
ON cells. In the presence of a bacteriophage that uses the O-antigen as receptor, the opvAB
OFF subpopulation is killed and the opvAB
ON subpopulation is selected. Acquisition of phage resistance by phase variation of O-antigen chain length requires a payoff: opvAB expression reduces Salmonella virulence. However, phase variation permits resuscitation of the opvAB
OFF subpopulation as soon as phage challenge ceases. Phenotypic heterogeneity generated by opvAB phase variation thus preadapts Salmonella to survive phage challenge with a fitness cost that is transient only.
The bacterial SeqA protein binds to hemi-methylated GATC sequences that arise in newly synthesized DNA upon passage of the replication machinery. In Escherichia coli K-12, the single replication origin oriC is a well-characterized target for SeqA, which binds to multiple hemi-methylated GATC sequences immediately after replication has initiated. This sequesters oriC, thereby preventing reinitiation of replication. However, the genome-wide DNA binding properties of SeqA are unknown, and hence, here, we describe a study of the binding of SeqA across the entire Escherichia coli K-12 chromosome, using chromatin immunoprecipitation in combination with DNA microarrays. Our data show that SeqA binding correlates with the frequency and spacing of GATC sequences across the entire genome. Less SeqA is found in highly transcribed regions, as well as in the ter macrodomain. Using synchronized cultures, we show that SeqA distribution differs with the cell cycle. SeqA remains bound to some targets after replication has ceased, and these targets locate to genes encoding factors involved in nucleotide metabolism, chromosome replication, and methyl transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.