The mtDNA mutator mice have high levels of point mutations and linear deletions of mtDNA causing a progressive respiratory chain dysfunction and a premature aging phenotype. We have now performed molecular analyses to determine the mechanism whereby these mtDNA mutations impair respiratory chain function. We report that mitochondrial protein synthesis is unimpaired in mtDNA mutator mice consistent with the observed minor alterations of steady-state levels of mitochondrial transcripts. These findings refute recent claims that circular mtDNA molecules with large deletions are driving the premature aging phenotype. We further show that the stability of several respiratory chain complexes is severely impaired despite normal synthesis of the corresponding mtDNA-encoded subunits. Our findings reveal a mechanism for induction of aging phenotypes by demonstrating a causative role for amino acid substitutions in mtDNA-encoded respiratory chain subunits, which, in turn, leads to decreased stability of the respiratory chain complexes and respiratory chain deficiency.
Mitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness, having been found in virtually all cancer types and most commonly affecting genes encoding mitochondrial complex I (CI) subunits. However, it is still unclear whether they exert a pro- or anti-tumorigenic effect. We here analyzed the impact of three homoplasmic mtDNA mutations (m.3460G>A/MT-ND1, m.3571insC/MT-ND1 and m.3243A>G/MT-TL1) on osteosarcoma progression, chosen since they induce different degrees of oxidative phosphorylation impairment. In fact, the m.3460G>A/MT-ND1 mutation caused only a reduction in CI activity, whereas the m.3571insC/MT-ND1 and the m.3243A>G/MT-TL1 mutations induced a severe structural and functional CI alteration. As a consequence, this severe CI dysfunction determined an energetic defect associated with a compensatory increase in glycolytic metabolism and AMP-activated protein kinase activation. Osteosarcoma cells carrying such marked CI impairment displayed a reduced tumorigenic potential both in vitro and in vivo, when compared with cells with mild CI dysfunction, suggesting that mtDNA mutations may display diverse impact on tumorigenic potential depending on the type and severity of the resulting oxidative phosphorylation dysfunction. The modulation of tumor growth was independent from reactive oxygen species production but correlated with hypoxia-inducible factor 1α stabilization, indicating that structural and functional integrity of CI and oxidative phosphorylation are required for hypoxic adaptation and tumor progression.
Mitochondrial complex I (CI) is a multi-subunit enzyme that forms the major entry point of nicotinamide adenine dinucleotide (NADH) electrons into the respiratory chain. Mutations in the NDUFS4 gene, encoding an accessory subunit of this complex, cause a Leigh-like phenotype in humans. To study the nature and penetrance of the CI defect in different tissues, we investigated the role of NDUFS4 in mice with fatal mitochondrial encephalomyopathy, caused by a systemic inactivation of the Ndufs4 gene. We report that the absence of NDUFS4 in different mouse tissues results in decreased activity and stability of CI. This CI instability leads to an increased disconnection of electron influx of the NADH dehydrogenase module from the holo-complex. However, the formation of respiratory supercomplexes still allows formation of active CI in these Ndufs4 knock-out mice. These results reveal the importance of these supramolecular interactions not only for stabilization but also for the assembly of CI, which becomes especially relevant in pathological conditions.
Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe exercise intolerance and multisystem manifestations. In this study, we characterized the biochemical properties of cybrids carrying this mutation and report that the homoplasmic p.278Y>C mutation caused a dramatic reduction in the CIII activity and in CIII-driven mitochondrial ATP synthesis. However, the CI, CI + CIII and CII + CIII activities and the rate of ATP synthesis driven by the CI or CII substrate were only partially reduced or unaffected. Consistent with these findings, mutated cybrids maintained the mitochondrial membrane potential in the presence of oligomycin, indicating that it originated from the respiratory electron transport chain. The p.278Y>C mutation enhanced superoxide production, as indicated by direct measurements in mitochondria and by the imbalance of glutathione homeostasis in intact cybrids. Remarkably, although the assembly of CI or CIII was not affected, the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.
BackgroundAerobic glycolysis, namely the Warburg effect, is the main hallmark of cancer cells. Mitochondrial respiratory dysfunction has been proposed to be one of the major causes for such glycolytic shift. This hypothesis has been revisited as tumors appear to undergo waves of gene regulation during progression, some of which rely on functional mitochondria. In this framework, the role of mitochondrial complex I is still debated, in particular with respect to the effect of mitochondrial DNA mutations in cancer metabolism. The aim of this work is to provide the proof of concept that functional complex I is necessary to sustain tumor progression.MethodsComplex I-null osteosarcoma cells were complemented with allotopically expressed complex I subunit 1 (MT-ND1). Complex I re-assembly and function recovery, also in terms of NADH consumption, were assessed. Clones were tested for their ability to grow in soft agar and to generate tumor masses in nude mice. Hypoxia levels were evaluated via pimonidazole staining and hypoxia-inducible factor-1α (HIF-1α) immunoblotting and histochemical staining. 454-pyrosequencing was implemented to obtain global transcriptomic profiling of allotopic and non-allotopic xenografts.ResultsComplementation of a truncative mutation in the gene encoding MT-ND1, showed that a functional enzyme was required to perform the glycolytic shift during the hypoxia response and to induce a Warburg profile in vitro and in vivo, fostering cancer progression. Such trigger was mediated by HIF-1α, whose stabilization was regulated after recovery of the balance between α-ketoglutarate and succinate due to a recuperation of NADH consumption that followed complex I rescue.ConclusionRespiratory complex I is essential for the induction of Warburg effect and adaptation to hypoxia of cancer cells, allowing them to sustain tumor growth. Differently from other mitochondrial tumor suppressor genes, therefore, a complex I severe mutation such as the one here reported may confer anti-tumorigenic properties, highlighting the prognostic values of such genetic markers in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.