Fusarium culmorum, a fungal pathogen of small grain cereals, produces 4-deoxynivalenol and its acetylated derivatives that may cause toxicoses on humans or animals consuming contaminated food or feed. Natural and natural-like compounds belonging to phenol and hydroxylated biphenyl structural classes were tested in vitro to determine their activity on vegetative growth and trichothecene biosynthesis by F. culmorum. Most of the compounds tested at 1.5 or 1.0 mM reduced 3acetyl-4-deoxynivalenol production by over 70% compared to the control, without affecting fungal growth significantly. Furthermore, several compounds retained their ability to inhibit toxin in vitro production at the lowest concentrations of 0.5 and 0.25 mM. Magnolol 27 showed fungicidal activity even at 0.1 mM. No linear correlation was observed between antioxidant properties of the compounds and their ability to inhibit fungal growth and mycotoxigenic capacity. A guaiacyl unit in the structure may play a key role in trichothecene inhibition.
ABSTRACT:The β-lactam antibiotic ceftriaxone was suggested as a therapeutic agent in several neurodegenerative disorders, either for its ability to counteract glutamate-mediated toxicity, as in cerebral ischemia, or for its ability to enhance the degradation of misfolded proteins, as in Alexander's disease. Recently, the efficacy of ceftriaxone in neuroprotection of dopaminergic neurons in a rat model of Parkinson's disease was documented. However, which characteristics of ceftriaxone mediate its therapeutic effects remains unclear. Since, at the molecular level, neuronal α-synuclein inclusions and pathological α-synuclein transmission play a leading role in initiation of Parkinson-like neurodegeneration, we thought of investigating, by circular dichroism spectroscopy, the capability of ceftriaxone to interact with α-synuclein. We found that ceftriaxone binds with good affinity to α-synuclein and blocks its in vitro polymerization. Considering this finding, we also documented that ceftriaxone exerts neuroprotective action in an in vitro model of Parkinson's disease. Our data, in addition to the findings on neuroprotective activity of ceftriaxone on Parkinson-like neurodegeneration in vivo, indicates ceftriaxone as a potential agent in treatment of Parkinson's disease.
BackgroundSharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors.ResultsIn this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P < 0.001 and D6 vs curcumin P < 0.01; Neuroblastoma: D6 vs both control and curcumin: P < 0.001).ConclusionsOur data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors.
Curcumin, a dietary polyphenol, has shown a potential to act on the symptoms of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, as a consequence of its antioxidant, anti-inflammatory and anti-protein aggregation properties. Unfortunately, curcumin undergoes rapid degradation at physiological pH into ferulic acid, vanillin and dehydrozingerone, making it an unlikely drug candidate. Here, we evaluated the ability of some curcumin by-products: dehydrozingerone (1), its O-methyl derivative (2), zingerone (3), and their biphenyl analogues (4-6) to interact with α-synuclein (AS), using CD and fluorescence spectroscopy. In addition, the antioxidant properties and the cytoprotective effects in rat pheochromocytoma (PC12) cells prior to intoxication with H2O2, MPP+ and MnCl2 were examined while the Congo red assay was used to evaluate the ability of these compounds to prevent aggregation of AS. We found that the biphenyl zingerone analogue (6) interacts with high affinity with AS and also displays the best antioxidant properties while the biphenyl analogues of dehydrozingerone (4) and of O-methyl-dehydrozingerone (5) are able to partially inhibit the aggregation process of AS, suggesting the potential role of a hydroxylated biphenyl scaffold in the design of AS aggregation inhibitors.
SummaryThis study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C 2-symmetric dimers 6–9. Four models were applied: model 1 – chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k A) of the reactions of the antioxidants with peroxyl radicals; model 2 – lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 – oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 – density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure–activity relationship. Dimers showed 2–2.5-fold higher values of k A than their monomers. Model 2 gives information about the effects of the side chains and revealed much higher antioxidant activity for monomers and dimers with α,β-unsaturated side chains. Curcumin and 6 in fact are dimers of the same monomer 2. We conclude that the type of linkage between the two “halves” by which the molecule is made up does not exert influence on the antioxidant efficiency and reactivity of these two dimers. The dimers and the monomers demonstrated higher activity than Trolox (10) in aqueous medium (model 3). A comparison of the studied compounds with DL-α-tocopherol (11), Trolox and curcumin is made. All dimers are characterized through lower bond dissociation enthalpies (BDEs) than their monomers (model 4), which qualitatively supports the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.