Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin–proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin–proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin–proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth.
Inactivation of one Ptc1 allele predisposes humans and mice to spontaneous medulloblastoma development, and irradiation of newborn Ptc1 heterozygous mice results in dramatic increase of medulloblastoma incidence. While a role for loss of wild-type (wt) Ptc1 (LOH) in radiationinduced medulloblastomas from Ptc1 neo67/ þ mice is well established, the importance of this event in spontaneous medulloblastomas is still unclear. Here, we demonstrate that biallelic Ptc1 loss plays a crucial role in spontaneous medulloblastomas, as shown by high rate of wt Ptc1 loss in spontaneous tumors. In addition, remarkable differences in chromosomal events involving the Ptc1 locus in spontaneous and radiation-induced medulloblastomas suggest distinct mechanisms for Ptc1 loss. To assess when, during tumorigenesis, Ptc1 loss occurs, we characterized cerebellar abnormalities that precede tumor appearance in Ptc1 neo67/ þ mice. We show that inactivation of only one copy of Ptc1 is sufficient to give rise to abnormal cerebellar proliferations with different degree of altered cell morphology, but lacking potential to progress to neoplasia. Furthermore, we identify biallelic Ptc1 loss as the event causally related to the transition from the preneoplastic stage to full blown medulloblastoma. These results underscore the utility of the Ptc1 neo67/ þ mouse model for studies on the mechanisms of medulloblastoma and for development of new therapeutic strategies.
The Transient Receptor Potential (TRP) superfamily consists of cation-selective and non-selective ion channels playing an important role both in sensory physiology and in physiopathology in several complex diseases including cancers. Among TRP family, the mucolipin (TRPML1, −2, and −3) channels represent a distinct subfamily of endosome/lysosome Ca2+ channel proteins. Loss-of-function mutations in human TRPML-1 gene cause a neurodegenerative disease, Mucolipidosis Type IV, whereas at present no pathology has been associated to human TRPML-2 channels.Herein we found that human TRPML-2 is expressed both in normal astrocytes and neural stem/progenitor cells. By quantitative RT-PCR, western blot, cytofluorimetric and immunohistochemistry analysis we also demonstrated that TRPML-2 mRNA and protein are expressed at different levels in glioma tissues and high-grade glioma cell lines of astrocytic origin. TRPML-2 mRNA and protein levels increased with the pathological grade, starting from pylocitic astrocytoma (grade I) to glioblastoma (grade IV). Moreover, by RNA interference, we demonstrated a role played by TRPML-2 in survival and proliferation of glioma cell lines. In fact, knock-down of TRPML-2 inhibited the viability, altered the cell cycle, reduced the proliferation and induced apoptotic cell death in glioma cell lines. The DNA damage and apoptosis induced by TRPML-2 loss increased Ser139 H2AX phosphorylation and induced caspase-3 activation; furthermore, knock-down of TRPML-2 in T98 and U251 glioma cell lines completely abrogated Akt and Erk1/2 phosphorylation, as compared to untreated cells.Overall, the high TRPML-2 expression in glioma cells resulted in increased survival and proliferation signaling, suggesting a pro-tumorigenic role played by TRPML-2 in glioma progression.
Germline aryl hydrocarbon receptor interacting protein (AIP) gene mutations confer a predisposition to pituitary adenoma (PA), predominantly GH-secreting (GH-PA). As recent data suggest a role for AIP in the pathogenesis of sporadic GH-PA and their response to somatostatin analogues (SSA), the expression of AIP and its partner, aryl hydrocarbon receptor (AHR), was determined by semiquantitative immunohistochemistry scoring in 62 sporadic GH-PA (37 treated with SSA preoperatively). The influence of Gsp status was studied in a subset of tumours (nZ39, 14 Gsp C ) and six GH-PA were available for primary cultures. AIP and AHR were detected in most cases, with a positive correlation between AIP and cytoplasmic AHR (PZ0.012). Low AIP expression was significantly more frequent in untreated vs SSA-treated tumours (44.0 vs 20.5%, PZ0.016). AHR expression or localisation did not differ between the two groups. Similarly, in vitro octreotide induced a median twofold increase in AIP expression (range 1.2-13.9, PZ0.027) in GH-PA. In SSA-treated tumours, the AIP score was significantly higher in the presence of preoperative IGF1 decrease or tumour shrinkage (PZ0.008 and PZ0.014 respectively). In untreated tumours, low AIP expression was significantly associated with invasiveness (PZ0.028) and suprasellar extension (PZ0.019). The only effect of Gsp status was a significantly lower nuclear AHR score in Gsp C vs Gsp K tumours (PZ0.025), irrespective
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.