Temperature and nutrients are fundamental, highly nonlinear drivers of biological processes, but we know little about how they interact to influence growth. This has hampered attempts to model population growth and competition in dynamic environments, which is critical in forecasting species distributions, as well as the diversity and productivity of communities. To address this, we propose a model of population growth that includes a new formulation of the temperature-nutrient interaction and test a novel prediction: that a species' optimum temperature for growth, T , is a saturating function of nutrient concentration. We find strong support for this prediction in experiments with a marine diatom, Thalassiosira pseudonana: T decreases by 3-6 °C at low nitrogen and phosphorus concentrations. This interaction implies that species are more vulnerable to hot, low-nutrient conditions than previous models accounted for. Consequently the interaction dramatically alters species' range limits in the ocean, projected based on current temperature and nitrate levels as well as those forecast for the future. Ranges are smaller not only than projections based on the individual variables, but also than those using a simpler model of temperature-nutrient interactions. Nutrient deprivation is therefore likely to exacerbate environmental warming's effects on communities.
Oxygen consumption during in vitro dark bottle incubations is the most common method to estimate planktonic respiration. This method is time consuming and labor instensive and, consequently, the database of planktonic respiration rates is scarce. Electron Transport System (ETS) activity measurement has gained acceptance as a routine technique to estimate respiration due to its high sensitivity. However, the in vitro ETS assay commonly used yields potential rates. Hence, the empirically determined ratio between in situ respiration and potential ETS activity is not constant, varying over two orders of magnitude, highly limiting the routine application of this technique to estimate microbial respiration. We hypothesized that in vivo ETS activity should be a reliable estimator of in situ respiration in marine plankton communities. The aim of this study was to develop a methodology to estimate in vivo ETS activity rates by using tetrazolium salt 2‐para (iodo‐phenyl)‐3(nitrophenyl)‐5(phenyl)tetrazolium chloride (INT) as electron acceptor. We established a procedure to apply the in vivo INT reduction method to natural marine microplankton samples. Optimum incubation times were found to be lower than 2–6 h, even for oligotrophic waters. The method was tested in natural waters, covering a very wide range of respiration rates and trophic conditions. A significant linear relationship was found between in situ respiration and in vivo INT reduction. Moreover, the ratio between oxygen consumption and INT reduction was constant across contrasting environments, which reveals the INT reduction method as a simple, quick, sensitive, and robust technique suitable to substantially improve the microbial plankton respiration database.
We used mesocosm experiments to study the bacterioplankton community in a highly dynamic coastal ecosystem during four contrasting periods of the seasonal cycle: winter mixing, spring phytoplankton bloom, summer stratification and autumn upwelling. A correlation approach was used in order to measure the degree of coupling between the dynamics of major bacterial groups, heterotrophic carbon cycling and environmental factors. We used catalysed reporter deposition-fluorescence in situ hybridization to follow changes in the relative abundance of the most abundant groups of bacteria (Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes). Bacterial carbon flux-related variables included bacterial standing stock, bacterial production and microbial respiration. The environmental factors included both, biotic variables such as chlorophyll-a concentration, primary production, phytoplankton extracellular release, and abiotic variables such as the concentration of dissolved inorganic and organic nutrients. Rapid shifts in the dominant bacterial groups occurred associated to environmental changes and bacterial bulk functions. An alternation between Alphaproteobacteria and Bacteroidetes was observed associated to different phytoplankton growth phases. The dominance of the group Bacteroidetes was related to high bacterial biomass and production. We found a significant, non-spurious, linkage between the relative abundances of major bacterial groups and bacterial carbon cycling. Our results suggest that bacteria belonging to these major groups could actually share a function in planktonic ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.