Abstract. Saturated aldehydes, e.g. 2-methylbutanal (2 MB, CH3CH2CH(CH3)C(O)H), are emitted into the atmosphere by several biogenic sources. The first step in the daytime atmospheric degradation of 2 MB involves gas-phase reactions initiated by hydroxyl (OH) radicals, chlorine (Cl) atoms, and/or sunlight. In this work, we report the rate coefficients for the gas-phase reaction of 2 MB with OH (kOH) and Cl (kCl), together with the photolysis rate coefficient (J), in the ultraviolet solar actinic region in Valencia (Spain) at different times of the day. The temperature dependence of kOH was described in the 263–353 K range by the following Arrhenius expression: kOH(T)=(8.88±0.41)×10-12 exp[(331±14)/T] cm3 molec.−1 s−1. At 298 K, the reported kOH and kCl are (2.68±0.07)×10-11 and (2.16±0.32)×10-10 cm3 molec.−1 s−1, respectively. Identification and quantification of the gaseous products of the Cl reaction and those from the photodissociation of 2 MB were carried out in a smog chamber by different techniques (Fourier transform infrared spectroscopy, proton transfer time-of-flight mass spectrometry, and gas chromatography coupled to mass spectrometry). The formation and size distribution of secondary organic aerosols formed in the Cl reaction were monitored by a fast mobility particle sizer spectrometer. A discussion on the relative importance of the first step in the daytime atmospheric degradation of 2 MB is presented together with the impact of the degradation products in marine atmospheres.
Abstract. Saturated aldehydes, e.g. 2-methylbutanal (2MB, CH3CH2CH(CH3)C(O)H), are emitted into the atmosphere by several biogenic sources. The first step in the daytime atmospheric degradation of 2MB involves gas-phase reactions initiated by hydroxyl (OH) radicals, chlorine (Cl) atoms and/or sunlight. In this work, we report the rate coefficients for the gas-phase reaction of 2MB with OH (kOH) and Cl (kCl) together with the photolysis rate coefficient (J) in the ultraviolet solar actinic region in Valencia (Spain) at different times of the day. The temperature dependence of kOH was described in the 263–353 K range by the following Arrhenius expression: kOH(T)=(8.88±0.41)×10-12 exp[(331±14)/T] cm3 molecule-1 s-1. At 298 K, the reported kOH and kCl are (2.68±0.07)×10-11 cm3 molecule-1 s-1 and (2.16±0.16)×10-11 cm3 molecule-1 s-1. Identification and quantification of the gaseous products of the Cl-reaction and those from the photodissociation of 2MB were carried out in a smog chamber by different techniques (Fourier transform infrared spectroscopy, proton transfer time-of-flight mass spectrometry, and gas chromatography coupled to mass spectrometry). The formation and size distribution of secondary organic aerosols formed in the Cl-reaction was monitored by a fast mobility particle sizer spectrometer. A discussion on the relative importance of the first step in the daytime atmospheric degradation of 2MB is presented together with the impact of the degradation products in marine atmospheres.
Abstract. The tropospheric fate of 2-methylpentanal (2MP) has been investigated in this work. First, the photochemistry of 2MP under simulated solar conditions was investigated by determining the UV absorption cross sections (220–360 nm) and the effective photolysis quantum yield in the UV solar actinic region (λ > 290 nm). The photolysis rate coefficient in that region was estimated using a radiative transfer model. Photolysis products were identified by Fourier Transform Infrared (FTIR) spectroscopy. Secondly, a kinetic study of the Cl- and OH- reactions of 2MP was also performed at 298 K and as a function of temperature (263–353 K), respectively. For the Cl-reaction, a relative kinetic method was used in a smog chamber coupled to FTIR spectroscopy, whereas for the OH-reaction, the Pulsed Laser Photolysis with Laser Induced Fluorescence (PLP-LIF) technique was employed. The estimated lifetime of 2MP depends on the location, the season, and the time of the day. Under mild-strong irradiation conditions, UV photolysis of 2MP may compete with its OH-reaction in a global atmosphere, while Cl reaction dominates in coastal areas at dawn. Finally, the gaseous product distribution of the Cl- and OH-reactions was measured in a smog chamber as well as the formation of secondary organic aerosols (SOAs) in the Cl-reaction and its size distribution (diameter between 5.6 and 560 nm). The implications on air quality are discussed based on the observed products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.