Abstract. We introduce in this paper a notion of continuity in digital spaces which extends the usual notion of digital continuity. Our approach uses multivalued maps. We show how the multivalued approach provides a better framework to define topological notions, like retractions, in a far more realistic way than by using just single-valued digitally continuous functions. In particular, we characterize the deletion of simple points, one of the most important processing operations in digital topology, as a particular kind of retraction.
In a recent paper (Escribano et al. in Discrete Geometry for Computer Imagery 2008. Lecture Notes in Computer Science, vol. 4992, pp. 81-92, 2008 we have introduced a notion of continuity in digital spaces which extends the usual notion of digital continuity. Our approach, which uses multivalued functions, provides a better framework to define topological notions, like retractions, in a far more realistic way than by using just single-valued digitally continuous functions.In this work we develop properties of this family of continuous functions, now concentrating on morphological operations and thinning algorithms. We show that our notion of continuity provides a suitable framework for the basic operations in mathematical morphology: erosion, dilation, closing, and opening. On the other hand, concerning thinning algorithms, we give conditions under which the existence of a retraction F : X -> X\D guarantees that D is deletable. The converse is not true, in general, although it is in certain particular important cases which are at the basis of many thinning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.