Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications
We have determined and analyzed the nucleic acid sequence of a 14,855-bp region that contains the complete gene cluster encoding the 4-hydroxyphenylacetic acid (4-HPA) degradative pathway of Escherichia coli W (ATCC 11105). This catabolic pathway is composed by 11 genes, i.e., 8 enzyme-encoding genes distributed in two putative operons, hpaBC (4-HPA hydroxylase operon) and hpaGEDFHI (meta-cleavage operon); 2 regulatory genes, hpaR and hpaA; and the gene, hpaX, that encodes a protein related to the superfamily of transmembrane facilitators and appears to be cotranscribed with hpaA. Although comparisons with other aromatic catabolic pathways revealed interesting similarities, some of the genes did not present any similarity to their corresponding counterparts in other pathways, suggesting different evolutionary origins. The cluster is flanked by two genes homologous to the cstA (carbon starvation protein) and tsr (serine chemoreceptor) genes of E. coli K-12. A detailed genetic analysis of this region has provided a singular example of how E. coli becomes adapted to novel nutritional sources by the recruitment of a catabolic cassette. Furthermore, the presence of the pac gene in the proximity of the 4-HPA cluster suggests that the penicillin G acylase was a recent acquisition to improve the ability of E. coli W to metabolize a wider range of substrates, enhancing its catabolic versatility. Five repetitive extragenic palindromic sequences that might be involved in transcriptional regulation were found within the cluster. The complete 4-HPA cluster was cloned in plasmid and transposon cloning vectors that were used to engineer E. coli K-12 strains able to grow on 4-HPA. We report here also the in vitro design of new biodegradative capabilities through the construction of a transposable cassette containing the wide substrate range 4-HPA hydroxylase, in order to expand the ortho-cleavage pathway of Pseudomonas putida KT2442 and allow the new recombinant strain to use phenol as the only carbon source.Although most of our current knowledge about the general bacterial metabolic pathways has been derived from the analysis of Escherichia coli, very few data are available about the ability of this microorganism to grow on aromatic compounds other than amino acids. It has been shown that E. coli B, C, and W, but not K-12 strains, are able to degrade 4-hydroxyphenylacetic acid (4-HPA) and homoprotocatechuate (3,4-hydroxyphenylacetate) (HPC) via an inducible, chromosomally encoded meta-cleavage pathway (8, 10).The HPC degradative operon of E. coli C has been partially cloned (25,43), and some of its products have been characterized (16-18, 40-42, 44, 48). In addition, we have previously demonstrated that the first step in the 4-HPA degradation in E. coli W, i.e., the formation of HPC, is catalyzed by a twocomponent aromatic hydroxylase (38,39). This enzyme is encoded by two genes which appear to be part of the same operon (38). The homologous 4-HPA hydroxylase operon of E. coli C has been also cloned and partially sequenced (38...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.