It is shown that each finite inverse monoid admits a finite F-inverse cover if and only if the same is true for each finite combinatorial strict inverse semigroup with an identity adjoined if and only if the same is true for the Margolis-Meakin expansion M(H ) of each finite elementary abelian p-group H for some prime p. Additional equivalent conditions are given in terms of the existence of locally finite varieties of groups having certain properties. Ultimately, the problem of whether each finite inverse monoid admits a finite F-inverse cover, is reduced to a question concerning the Kostrikin-Zelmanov varieties K n of all locally finite groups of exponent dividing n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.