Magnetic Fe(2)O(3)/carbon hybrids were prepared in a two-step process. First, acetic acid vapor interacted with iron cations dispersed on the surface of a nanocasted ordered mesoporous carbon (CMK-3). In the second step, the primarily created iron acetate species underwent pyrolysis and transformed to magnetic iron oxide nanoparticles. X-ray diffraction, Fourier-transform infrared, and Raman spectroscopies were used for the chemical and structural characterization of the hybrids, while surface area measurements, thermal analysis, and transmission electron microscopy were employed to determine their physical, surface, and textural properties. These results revealed the preservation of the host carbon structure, which was homogenously and controllably loaded (up to 27 wt %) with nanosized (ca. 20 nm) iron oxides inside the mesoporous system. Mössbauer spectroscopy and magnetic measurements at low temperatures confirmed the formation of γ-Fe(2)O(3) nanoparticles exhibiting superparamagnetic behavior. The kinetic studies showed a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these magnetic mesoporous hybrids and a considerably increased adsorption capacity per unit mass of sorbent in comparison to that of pristine CMK-3 carbon. The results also indicate highly pH-dependent sorption efficiency of the hybrids, whereas their kinetics was described by a pseudo-second-order kinetic model. Taking into account the simplicity of the synthetic procedure and possibility of magnetic separation of hybrids with immobilized pollutant, the developed mesoporous nanomaterials have quite real potential for applications in water treatment technologies.
A novel two-step approach for preparing carbon nanotube (CNT) systems, exhibiting an extraordinary combination of functional properties, is presented. It is based upon nanocomposite films consisting of metal (Me = Ni, Fe, Mo, Sn) nanoparticles embedded into diamond-like carbon (DLC). The main concept behind this approach is that DLC inhibits the growth of Me, resulting in the formation of small nanospheres instead of layers or extended grains. In the second step, DLC:Me substrates were used as catalyst templates for the growth of CNTs by the thermal chemical vapor deposition (T-CVD) process. X-ray photoelectron spectroscopy (XPS) has shown that at the T-CVD temperature of 700 °C DLC is completely graphitized and NiC is formed, making DLC:Ni a very effective catalyst for CNT growth. The catalyst layers and the CNT systems have been characterized with a wide range of analytical techniques such as Auger electron spectroscopy and X-ray photoelectron spectroscopy (AES/XPS), X-ray diffraction, reflectivity and scattering, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical and electrical testing. The produced CNTs are of excellent quality, without needing any further purification, durable, firmly attached to the substrate, and of varying morphology depending on the density of catalyst nanoparticles. The produced CNTs exhibit exceptional properties, such as super-hydrophobic surfaces (contact angle up to 165°) and exceptionally low optical reflection (reflectivity <10(-4)) in the entirety of the visible range. The combination of the functional properties makes these CNT systems promising candidates for solar thermal harvesting, as it is demonstrated by solar simulation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.