Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia—one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus’s range.
The holistic approach of One Health, which sees human, animal, plant, and environmental health as a unit, rather than discrete parts, requires not only interdisciplinary cooperation, but standardized methods for communicating and archiving data, enabling participants to easily share what they have learned and allow others to build upon their findings. Ongoing work by NCBI and the GenomeTrakr project illustrates how open data platforms can help meet the needs of federal and state regulators, public health laboratories, departments of agriculture, and universities. Here we describe how microbial pathogen surveillance can be transformed by having an open access database along with Best Practices for contributors to follow. First, we describe the open pathogen surveillance framework, hosted on the NCBI platform. We cover the current community standards for WGS quality, provide an SOP for assessing your own sequence quality and recommend QC thresholds for all submitters to follow. We then provide an overview of NCBI data submission along with step by step details. And finally, we provide curation guidance and an SOP for keeping your public data current within the database. These Best Practices can be models for other open data projects, thereby advancing the One Health goals of Findable, Accessible, Interoperable and Re-usable (FAIR) data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.