A known technique to obtain subpixel resolution by using object tracking through cross-correlation consists of interpolating the obtained correlation function and then refining peak location. Although the technique provides accurate results, peak location is usually biased toward the closest integer coordinate. This effect is known as the peak-locking error and it strongly limits this calculation technique’s experimental accuracy. This error may differ depending on the scene and algorithm used to fit and interpolate the correlation peak, but in general, it may be attributed to a sampling problem and the presence of aliasing. Many studies in the literature analyze this effect in the Fourier domain. Here, we propose an alternative analysis on the spatial domain. According to our interpretation, the peak-locking error may be produced by a non-symmetrical sample distribution, thus provoking a bias in the result. According to this, the peak interpolant function, the size of the local domain and low-pass filters play a relevant role in diminishing the error. Our study explores these effects on different samples taken from the DIC Challenge database, and the results show that, in general, peak fitting with a Gaussian function on a relatively large domain provides the most accurate results.
Some materials undergo an hygric expansion when they are soaked. In porous rocks, this effect is enhanced by the pore space that allows the water to reach every part of its volume and to hydrate the most of their swelling parts. This enlargement has negative structural consequences in the vicinity since adjacent elements will support some compressions or displacements. Recently image-based methods have arisen in this field due to their advantages versus traditional methods. Among all image processing methods, digital image correlation (DIC) is one of the most used in all areas. In this work, we propose a new methodology based on DIC for the calculation of the hygric expansion of materials. We use porous sandstone, with dimensions 14x14x30 mm to measure its hygric swelling using an industrial digital camera and a telecentric objective. We took one image every 5 minutes to characterize the whole swelling process. Due the large magnification, the whole 14 mm length of one contour was not in the image and therefore we lost the image scale reference. To solve this, a 1951 USAF test was used to calibrate the imagen. The telecentric objective and a narrow deep of field allowed to have the specimen surface exactly on the same plane that the USAF test was during the calibration. The image was pointed to one corner of the specimen, to obtain information not only of its vertical displacement due to its expansion but also of its horizontal movement. Preliminary results show that the proposed methodology provides reliable information of the hygric swelling using a non-contact methodology, with an accuracy of 1 micron.
Some materials undergo hygric expansion when soaked. In porous rocks, this effect is enhanced by the pore space, because it allows water to reach every part of its volume and to hydrate most swelling parts. In the vicinity, this enlargement has negative structural consequences as adjacent elements support some compressions or displacements. In this work, we propose a normalized cross-correlation between rock surface texture images to determine the hygric expansion of such materials. We used small porous sandstone samples (11 × 11 × 30 mm3) to measure hygric swelling. The experimental setup comprised an industrial digital camera and a telecentric objective. We took one image every 5 min for 3 h to characterize the whole swelling process. An error analysis of both the mathematical and experimental methods was performed. The results showed that the proposed methodology provided, despite some limitations, reliable hygric swelling information by a non-contact methodology with an accuracy of 1 micron and permitted the deformation in both the vertical and horizontal directions to be explored, which is an advantage over traditional linear variable displacement transformers.
The COVID pandemic is forcing the renewal of scientific conferences, offering opportunities to introduce technological and inclusive developments. Our analysis focuses on the implementation of inclusive practices for female and early-career researchers in a virtual scientific conference. This organization approach was applied in the XIII Spanish Optical Meeting (RNO2021), which was also characterized by avatars interacting in an online metaverse. The effectiveness of inclusive policies and novel technological tools was evaluated using the participation data and a post-conference survey. Our study reveals the high impact of inclusive actions and a strong interest in the scientific community to explore conference advances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.