In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.