The world's tropical reef ecosystems, and the people who depend on them, are increasingly 60 impacted by climate change [1][2][3][4][5][6][7] Reef, as well as the potential influence of water quality and fishing pressure on the severity of 71 bleaching. 72The geographic footprints of mass bleaching of corals on the Great Barrier Reef have varied 73 strikingly during three major events in 1998 , 2002 and 2016). In 1998, bleaching was 74 primarily coastal and most severe in the central and southern regions. In 2002, bleaching was 75 more widespread, and affected offshore reefs in the central region that had escaped in 1998 8 . 76In 2016, bleaching was even more extensive and much more severe, especially in the 77 northern, and to a lesser extent the central regions, where many coastal, mid-shelf and 78 offshore reefs were affected (Fig. 1a, b). In 2016, the proportion of reefs experiencing 79 extreme bleaching (>60% of corals bleached) was over four times higher compared to 1998 80 or 2002 (Fig. 1f) The severity and distinctive geographic footprints of bleaching in each of the three 88 years can be explained by differences in the magnitude and spatial distribution of sea-surface 89 temperature anomalies (Fig. 1a, b 102The geographic pattern of bleaching also demonstrates how marine heatwaves can be (Fig. 2a) (Fig. 1g). largely escaped bleaching in the two earlier events (Fig. 1a). Thirty-five percent of the reefs (Fig. 1b, e). We conclude that the overlap of disparate geographic bleaching at the scale of both individual reefs and the entire Great Barrier Reef (Fig. 1a, b). 134We found a similar strong relationship between the amount of bleaching measured 135 underwater, and the satellite-based estimates of heat exposure on individual reefs (Fig. 3). 136Low levels of bleaching was observed at some locations when DHW values were only 2-3 137 o C-weeks. Typically, 30-40% of corals bleached on reefs exposed to 4 o C-weeks, whereas an 138 average of 70-90% of corals bleached on reefs that experience 8 o C-weeks or more (Fig. 3). 139Resistance and adaptation to bleaching 140 Once we account for the amount of heat stress experienced on each reef, adding 141 chlorophyll-a, a proxy for water quality, to our statistical model yielded no support for the 142 hypothesis that good water quality confers resistance to bleaching 13 . Rather, the estimated 143 effect of chlorophyll-a was to significantly reduce the DHW threshold for bleaching 144 (Extended Data Table 1). However, despite the statistical significance, the effect in real terms 145 beyond heat stress alone is very small (Extended Data Fig. 1). Similarly, we found no effect 146 of the level of protection (in fished or protected zones) on bleaching (P > 0.1: Extended Data 147 Table 1). These results are consistent with the broad-scale pattern of severe bleaching in the 148 northern Great Barrier Reef, which affected hundreds of reefs across inshore-offshore 149 gradients in water quality, and regardless of their zoning (protection) status (Fig. 1a, b). 150Simila...
Triple-bottom-line outcomes from resource management and conservation, where conservation goals and equity in social outcomes are maximized while overall costs are minimized, remain a highly sought-after ideal. However, despite widespread recognition of the importance that equitable distribution of benefits or costs across society can play in conservation success, little formal theory exists for how to explicitly incorporate equity into conservation planning and prioritization. Here, we develop that theory and implement it for three very different case studies in California (United States), Raja Ampat (Indonesia), and the wider Coral Triangle region (Southeast Asia). We show that equity tends to trade off nonlinearly with the potential to achieve conservation objectives, such that similar conservation outcomes can be possible with greater equity, to a point. However, these case studies also produce a range of trade-off typologies between equity and conservation, depending on how one defines and measures social equity, including direct (linear) and no trade-off. Important gaps remain in our understanding, most notably how equity influences probability of conservation success, in turn affecting the actual ability to achieve conservation objectives. Results here provide an important foundation for moving the science and practice of conservation planning-and broader spatial planning in general-toward more consistently achieving efficient, equitable, and effective outcomes. marine protected areas | environmental justice | marine spatial planning | ecosystem-based management | social-ecological systems
SignificanceMarine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.