The removal of a commercial herbicide, based on clopyralid, by means of Electro-Fenton (EF) was studied using a soil washing effluent obtained using synthetic ground water as washing fluid. From the results, it was observed that the degradation and mineralization yields of clopyralid were high, even without the addition of supporting electrolyte. The groundwater could be then used as a sustainable supporting electrolyte. The influence of the minerals constituents, the current and the ferrous ions regeneration was evaluated. The highest hydrogen peroxide production was achieved working at 200 mA but regeneration of ferrous ions was not efficient at this current. Iodide ions were one of the main responsible in the EF efficiency decrease due to their reaction with the produced hydrogen peroxide. Electrochemical study proved that clopyralid was not electroactive and that its degradation was mainly due to radical oxidation. Long duration electrolysis carried out at 200 mA in groundwater provided an improvement of the solution biodegradability after 480 min that can be linked to a significant increase in the carboxylic acids production. These results support the feasibility of applying an EF process in order to carry out a subsequent biological mineralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.