After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UVdamaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.PrimPol | polκ | polη | DNA damage tolerance | DNA replication T he DNA-binding protein Rad51 is a central component of homologous recombination repair (HRR). HRR repairs doublestrand breaks (DSBs) in an error-free way and processes one-ended DSBs to reactivate collapsed replication forks (1). During HRR, DSBs are processed by the 3′-to-5′ exonuclease activity of the double strand break repair nuclease (Mre11) to generate protruding 3′ ssDNA at DSBs. The ssDNA is then coated with Rad51, a factor that catalyzes homology search and strand invasion. The loading and stabilization of Rad51/ssDNA complexes are supported by multiple mediators, such as the tumor suppressor BRCA2 (breast cancer 2) (1). Moreover, Rad51 promotes XPF1-and Exo1-mediated DSB formation after gemcitabine-induced irreversible ribonucleotide reductase inhibition, thus promoting cell death (2). The signals that redirect Rad51 into a DSB formation pathway rather than DSB repair are not yet known.The functions of Rad51 are not limited to the processing/ generation of DSBs. Over the past few years, it has become evident that Rad51 escorts ongoing replication forks regardless of the presence of DSBs (3-5). Specifically, Rad51 protects persistently stalled replication forks from Mre11-mediated nucleolytic degradation and facilitates replication fork restart when the replication-halting agent hydroxyurea (HU) or aphidicolin (APH) is removed (6-19). Such novel functions of Rad51 require many HRR factors, including BCRA2, FANCD2 (Fanconi Anemia Complementation group protein D2), CtIP, BRCA1, and the WRN helicase, but are independent of HRR effectors, such as Rad54 (6, 7). Rad51-dependent fork-restart and fork-protection ...
The checkpoint kinases Chk1 and ATR are broadly known for their role in the response to the accumulation of damaged DNA. Because Chk1 activation requires its phosphorylation by ATR, it is expected that ATR or Chk1 down-regulation should cause similar alterations in the signals triggered by DNA lesions. Intriguingly, we found that Chk1, but not ATR, promotes the progression of replication forks after UV irradiation. Strikingly, this role of Chk1 is independent of its kinase-domain and of its partnership with Claspin. Instead, we demonstrate that the ability of Chk1 to promote replication fork progression on damaged DNA templates relies on its recently identified proliferating cell nuclear antigen-interacting motif, which is required for its release from chromatin after DNA damage. Also supporting the importance of Chk1 release, a histone H2B-Chk1 chimera, which is permanently immobilized in chromatin, is unable to promote the replication of damaged DNA. Moreover, inefficient chromatin dissociation of Chk1 impairs the efficient recruitment of the specialized DNA polymerase η (pol η) to replication-associated foci after UV. Given the critical role of pol η during translesion DNA synthesis (TLS), these findings unveil an unforeseen facet of the regulation by Chk1 of DNA replication. This kinase-independent role of Chk1 is exclusively associated to the maintenance of active replication forks after UV irradiation in a manner in which Chk1 release prompts TLS to avoid replication stalling. T he checkpoint kinases ATR and Chk1 are central factors in the DNA damage response (1). During the S phase checkpoint, ATR is activated at single-stranded DNA (ssDNA) and this event, in turn, activates the effector kinase Chk1. Although ATR remains associated with the DNA, activated Chk1 rapidly spreads throughout the whole nucleus. Within the nucleoplasm, Chk1 delays the progression through S phase via phosphorylation of key target genes (2, 3).Several lines of evidence suggest that the activities of ATR and Chk1 are also required for proper unperturbed S phase progression. In fact, ATR or Chk1 loss leads to embryonic lethality (4-7), and Chk1 heterozygosity is associated with multiple defects, including a miscoordinated cell cycle and increased apoptosis (8).A contribution of Chk1 to replication fork stability during unperturbed DNA replication was identified and characterized in detail (9-11). Chk1 activity promotes the maintenance of global replication rates by regulating origin firing. In line with these observations, the monoallelic expression of the mutant Chk1 S317A, which is not phosphorylated by ATR, impairs fork elongation (12). Together, these results reveal an unambiguous role of the Chk1 kinase during unperturbed DNA replication. Intriguingly, recent reports described a kinase-independent effect of Chk1 on DNA replication-associated events. Scorah and colleagues discovered a proliferating cell nuclear antigen (PCNA) binding motif of Chk1 (Chk1_TRFF motif) required for the efficient dissociation of Chk1 from chromatin a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.