Nupr1 is a chromatin protein, which cooperates with KrasG12D to induce PanIN formation and pancreatic cancer development in mice, though the molecular mechanisms underlying this effect remain to be fully characterized. In the current study, we report that Nupr1 acts as a gene modifier of the effect of KrasG12D-induced senescence by regulating Dnmt1 expression and consequently genome-wide levels of DNA methylation. Congruently, 5-aza-2′-deoxycytydine, a general inhibitor of DNA methylation, reverses the KrasG12D-induced PanIN development by promoting senescence. This requirement of Nupr1 expression, however, is not restricted to the pancreas since in lung of Nupr1–/– mice the expression of KrasG12D induces senescence instead of transformation. Therefore, mechanistically this data reveals that epigenetic events, at least at the level of DNA methylation, modulate the functional outcome of common genetic mutations, such as KrasG12D, during carcinogenesis. The biomedical relevance of these findings lies in that they support the rational for developing similar therapeutic interventions in human aimed at controlling either the initiation or progression of cancer.
NUPR1 is a protumoral multifunctional intrinsically disordered protein (IDP), which is activated during the acute phases of pancreatitis. It interacts with other IDPs such as prothymosin α, as well as with folded proteins such as the C-terminal region of RING1-B (C-RING1B) of the Polycomb complex; in all those interactions, residues around Ala33 and Thr68 (the 'hot-spot' region) of NUPR1 intervene. Its paralogue, NUPR1L, is also expressed in response to DNA damage, it is p53-regulated, and its expression down-regulates that of the gene. In this work, we characterized the conformational preferences of isolated NUPR1L and its possible interactions with the same molecular partners of NUPR1. Our results show that NUPR1L was an oligomeric IDP from pH 2.0 to 12.0, as judged by steady-state fluorescence, circular dichroism (CD), dynamic light scattering, 1DH-NMR (nuclear magnetic resonance), and as indicated by structural modelling. However, in contrast with NUPR1, there was evidence of local helical- or turn-like structures; these structures were not rigid, as judged by the lack of sigmoidal behaviour in the chemical and thermal denaturation curves obtained by CD and fluorescence. Interestingly enough, NUPR1L interacted with prothymosin α and C-RING1B, and with a similar affinity to that of NUPR1 (in the low micromolar range). Moreover, NUPR1L hetero-associated with NUPR1 with an affinity of 0.4 µM and interacted with the 'hot-spot' region of NUPR1. Thus, we suggest that the regulation of gene by NUPR1L does not only happen at the DNA level, but it could also involve direct interactions with NUPR1 natural partners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.