ResumenEn el presente trabajo se realizó un estudio de la deposición de hidroxiapatita sobre un sustrato de titanio mediante el método biomimético. Para ello se empleó una disolución con elevado contenido de calcio y fósforo (SCS). Además, se realizó la activación del titanio a partir de la aplicación de procesos de oxidación con peróxido de hidrógeno y ácido clorhídrico con un posterior tratamiento térmico. La caracterización de los materiales empleados, así como de los recubrimientos obtenidos, se realizó mediante Espectroscopia Infrarroja (FT-IR), Difracción de Rayos X (DRX), Microscopia Electrónica de Barrido (MEB) y Espectroscopia de Energía Dispersiva de Rayos X (EDX). Como resultado del proceso de activación se formó un óxido de titanio hidratado. Sobre la superficie activada se logró obtener un recubrimiento de hidroxiapatita en un período de 24 h, caracterizado por su elevada densidad y cristalinidad y por presentar un espesor entre 2-4 µm. Palabras claveHidroxiapatita; Titanio; Biomimético; Recubrimiento. Obtaining hydroxyapatite coatings on titanium by the biomimetic method AbstractIn this work, a study about the deposition of hydroxyapatite on a titanium substrate employing the biomimetic method is presented. A solution with high content of calcium and phosphorus (SCS) was used. In addition, activation of titanium with hydrogen peroxide and hydrochloric acid and a subsequent heat treatment was performed. The characterization of materials used and the coating obtained was carried out by Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). As a result of the activation processes a hydrated titanium oxide was formed. On the active surface, a coating of hydroxyapatite was obtained after a period of 24 h, which has a thickness of about 2-4 µm. KeywordsHydroxyapatite; Titanium; Biomimetic; Coating. INTRODUCCIÓNEn la actualidad, el titanio y sus aleaciones se utilizan de forma extensiva en la fabricación de dispositivos biomédicos implantables que trabajan sometidos a la acción de elevadas cargas biomecánicas. Sin embargo, debido a que existen diferencias significativas entre la composición química y de fases presentada por estos materiales y el tejido óseo, la inserción de estos en el esqueleto humano puede redundar en la ausencia de una unión fuerte entre el hueso y el implante, reacciones a cuerpo extraño y corrosión de la superficie del dispositivo implantado, entre otros [1][2][3] .Es conocido que ciertas cerámicas bioactivas, entre las que se encuentra la hidroxiapatita (HA), tienen la capacidad de unirse de forma fuerte y estable al hueso, comportamiento vinculado a procesos que facilitan la aposición ósea en sus superficies [4 y 5] .En aras de combinar las propiedades mecánicas del titanio con la aptitud de unirse al hueso de estas cerá-micas bioactivas, se han ensayado varios métodos para recubrir la superficie metálica, entre los cuales se encuentra el método biomimético [6][7][8][9] . Este método fue desarrolla...
Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) with polarized radiation is employed to characterize TiO 2 thin films thermally grown on Ti substrates, which exhibit the so-called Berreman effect. The DRIFT analysis of thin films in the context of the Berreman effect is simple and fast, and allows the identification of the crystalline/amorphous structure of TiO 2 thin layers even in the presence of other coatings, such as hydroxyapatite deposits, on top of the titanium oxide films.
The biomimetic method is used for the deposition of calcium phosphate coatings (Ca -P) on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS) with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 °C for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 μm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.