A deep survey of the Large Magellanic Cloud at ∼ 0.1−100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3 − 2.4 pending a flux increase by a factor > 3 − 4 over ∼ 2015 − 2035. Large-scale interstellar emission remains mostly out of reach of the survey if its > 10 GeV spectrum has a soft photon index ∼ 2.7, but degree-scale 0.1 − 10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1 − 10% of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within < 100 pc. Finally, the survey could probe the canonical velocity-averaged cross section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles.
In this work we characterize the distribution of Dark Matter (DM) in the Milky Way (MW), and its uncertainties, adopting the well known "Rotation Curve" method. We perform a full marginalization over the uncertainties of the Galactic Parameters and over the lack of knowledge on the morphology of the baryonic components of the Galaxy. The local DM density ρ 0 is constrained to the range 0.3−0.8 GeV/cm 3 at the 2σ level, and has a strong positive correlation to R 0 , the local distance from the Galactic Center. The not well-known value of R 0 is thus, at the moment, a major limitation in determining ρ 0 . Similarly, we find that the inner slope of the DM profile, γ, is very weakly constrained, showing no preference for a cored profile (γ 0) or a cuspy one (γ [1.0, 1.4]). Some combination of parameters can be, however, strongly constrained. For example the often used standard ρ 0 = 0.3 GeV/cm 3 , R 0 = 8.5 kpc is excluded at more than 4 σ. We release the full likelihood of our analysis in a tabular form over a multidimensional grid in the parameters characterizing the DM distribution, namely the scale radius R s , the scale density ρ s , the inner slope of the profile γ, and R 0 . The likelihood can be used to include the effect of the DM distribution uncertainty on the results of searches for an indirect DM signal in gamma-rays or neutrinos, from the Galactic Center (GC), or the Halo region surrounding it. As one example, we study the case of the GC excess in gamma rays. Further applications of our tabulated uncertainties in the DM distribution involve local DM searches, like direct detection and anti-matter observations, or global fits combining local and GC searches.
Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter profile in the target in object.
We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that might suffer from systematic bias. We investigate different models for the mass distribution of the luminous (baryonic) component that bracket the range of likely morphologies. We demonstrate the statistical performance of our method on simulated data in terms of coverage, fractional distance, and mean squared error. Applying it to Milky Way data we measure the local dark matter density at the solar circle ρ 0 to be ρ 0 = 0.43 ± 0.02(stat) ± 0.01(sys) GeV/cm 3 , with an accuracy ∼ 6%. This result is robust to the assumed baryonic morphology. The scale radius and inner slope of the dark matter profile are degenerate and cannot be individually determined with high accuracy. We show that these results are robust to several possible residual systematic errors in the rotation curve data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.