We explore constraints on dark energy and modified gravity with forecasted 21cm intensity mapping measurements using the Effective Field Theory approach. We construct a realistic mock data set forecasting a low redshift 21cm signal power spectrum P 21(z,k) measurement from the MeerKAT radio-telescope. We compute constraints on cosmological and model parameters through Monte-Carlo Markov-Chain techniques, testing both the constraining power of P 21(k) alone and its effect when combined with the latest Planck 2018 CMB data. We complement our analysis by testing the effects of tomography from an ideal mock data set of observations in multiple redshift bins. We conduct our analysis numerically with the codes EFTCAMB/EFTCosmoMC, which we extend by implementing a likelihood module fully integrated with the original codes. We find that adding P 21(k) to CMB data provides significantly tighter constraints on Ωc h 2 and H 0, with a reduction of the error with respect to Planck results at the level of more than 60%. For the parameters describing beyond ΛCDM theories, we observe a reduction in the error with respect to the Planck constraints at the level of ≲ 10%. The improvement increases up to ∼ 35% when we constrain the parameters using ideal, tomographic mock observations. We conclude that the power spectrum of the 21cm signal is sensitive to variations of the parameters describing the examined beyond ΛCDM models and, thus, P 21(k) observations could help to constrain dark energy. The constraining power on such theories is improved significantly by tomography.
In a General Relativistic framework, Gravitational Waves (GW) and Electromagnetic (EM) waves are expected to respond in the same way to the effects of matter perturbations between the emitter and the observer. A different behaviour might be a signature of alternative theories of gravity. In this work we study the cross-correlation of resolved GW events (from compact objects mergers detected by the Einstein Telescope, either assuming or excluding the detection of an EM counterpart) and EM signals (coming both from the Intensity Mapping of the neutral hydrogen distribution and resolved galaxies from the SKA Observatory), considering weak lensing, angular clustering and their cross term (L × C) as observable probes. Cross-correlations of these effects are expected to provide promising information on the behaviour of these two observables, hopefully shedding light on beyond GR signatures. We perform a Fisher matrix analysis with the aim of constraining the {μ 0, η 0, Σ 0} parameters, either opening or keeping fixed the background parameters {w 0, w a}. We find that, although lensing-only forecasts provide significantly unconstrained results, the combination with angular clustering and the cross-correlation of all three considered tracers (GW, IM, resolved galaxies) leads to interesting and competitive constraints. This offers a novel and alternative path to both multi-tracing opportunities for Cosmology and the Modified Gravity sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.