In this work, a detailed description of the internal flow field in a collapsing bore generated on a slope in a wave flume is given. It is found that in the case at hand, just prior to breaking, the shape of the free surface and the flow field below are dominated by capillary effects. While numerical approximations are able to predict the development of the free surface as it shoals on the laboratory beach, the internal flow field is poorly predicted by standard numerical models.
Mass transport induced by wave motion is a major factor in the formation of circulation patterns in the nearshore zone which in turn affect beach erosion and resedimentation (Inman & Brush, 1973;Masselink et al., 2014). It is generally thought that the main cause of nearshore circulation are energetic breaking waves which can lead to significant nearshore wave set-up (increased mean-water level) and in connection with bathymetric features lead to undertow, edge waves, and rip currents (
Long waves in shallow water propagating over a background shear flow towards a sloping beach are being investigated. The classical shallow-water equations are extended to incorporate both a background shear flow and a linear beach profile, resulting in a non-reducible hyperbolic system. Nevertheless, it is shown how several changes of variables based on the hodograph transform may be used to transform the system into a linear equation which may be solved exactly using the method of separation of variables. This method can be used to investigate the run-up of a long wave on a planar beach including the development of the shoreline.
It is well known that weak hydraulic jumps and bores develop a growing number of surface oscillations behind the bore front. Defining the bore strength as the ratio of the head of the undular bore to the undisturbed depth, it was found in the classic work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar flow is demarcated from the regime of partially turbulent flows by a sharply defined value 0.281. This critical bore strength is characterized by the eventual breaking of the leading wave of the bore front. Compared to the flow depth in the wave flume, the waves developing behind the bore front are long and of small amplitude, and it can be shown that the situation can be described approximately using the well known Kortweg–de Vries equation. In the present contribution, it is shown that if a shear flow is incorporated into the KdV equation, and a kinematic breaking criterion is used to test whether the waves are spilling, then the critical bore strength can be found theoretically within an error of less than ten percent.
It is shown that very steep coastal profiles can give rise to unexpectedly large wave events at the coast. We combine insight from exact solutions of a simplified mathematical model with photographs from observations at the Norwegian coast near the city of Haugesund. The results suggest that even under moderate wave conditions, very large run-up can occur at the shore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.