SummaryThe natural diversity of honey bees in Europe is eroding fast. A multitude of reasons lead to a loss of both genetic diversity and specific adaptations to local conditions. To preserve locally adapted bees through breeding efforts and to maintain regional strains in conservation areas, these valuable populations need to be identified.In this paper, we give an overview of methods that are currently available and used for recognition of honey bee subspecies and ecotypes, or that can be utilised to verify the genetic origin of colonies for breeding purposes. Beyond summarising details of morphometric, allozyme and DNA methods currently in use, we report recommendations with regard to strategies for sampling, and suggest methods for statistical data analysis. In particular, we emphasise the importance of reference data and consistency of methods between laboratories to yield comparable results.
Métodos estándar para la caracterización de las subespecies y ecotipos de Apis mellifera ResumenLa diversidad natural de la abeja de la miel se está deteriorando rápidamente en Europa. Existen multitud de razones que conducen tanto a una pérdida de diversidad genética como de adaptaciones específicas a las condiciones locales. Se necesita identificar a estas valiosas poblaciones para preservar a las abejas adaptadas a nivel local, mediante esfuerzos para la mejora y el mantenimiento de variedades regionales en las áreas de conservación.En este artículo, realizamos una revisión general de los actuales métodos disponibles que se utilizan para la determinación de subespecies y ecotipos de abejas melíferas, o que pueden ser utilizados para verificar el origen genético de las colmenas seleccionadas con fines de cría.Además, resumimos las características de los métodos morfométricos, de aloenzimas y de ADN, realizamos recomendaciones con respecto a las estrategias de muestreo, y sugerimos métodos para el análisis estadístico de los datos. En particular, destacamos la importancia de los datos de referencia y la coherencia de los métodos entre laboratorios para producir resultados comparables.
SummaryThe survival and performance of 597 honey bee colonies, representing five subspecies and 16 different genotypes, were comparatively studied in 20 apiaries across Europe. Started in October 2009, 15.7% of the colonies survived without any therapeutic treatment against diseases until spring 2012. The survival duration was strongly affected by environmental factors (apiary effects) and, to a lesser degree, by the genotypes and origin of queens. Varroa was identified as a main cause of losses (38.4%), followed by queen problems (16.9%) and Nosema infection (7.3%). On average, colonies with queens from local origin survived 83 days longer compared to non-local origins (p < 0.001).This result demonstrates strong genotype by environment interactions. Consequently, the conservation of bee diversity and the support of local breeding activities must be prioritised in order to prevent colony losses, to optimize a sustainable productivity and to enable a continuous adaptation to environmental changes.
International audienceMost studies that have shown negative sublethal effects of the pesticide imidacloprid on honeybees concern behavioral effects; only a few concern physiological effects. Therefore, we investigated sublethal effects of imidacloprid on the development of the hypopharyngeal glands (HPGs) and respiratory rhythm in honeybees fed under laboratory conditions. We introduced newly emerged honeybees into wooden mesh-sided cages and provided sugar solution and pollen pastry ad libitum. Imidacloprid was administered in the food: 2 μg/kg in the sugar solution and 3 μg/kg in the pollen pastry. The acini, the lobes of the HPGs of imidacloprid-treated honeybees, were 14.5 % smaller in diameter in 9-day-old honeybees and 16.3 % smaller in 14-day-old honeybees than in the same-aged untreated honeybees; the difference was significant for both age groups. Imidacloprid also significantly affected the bursting pattern of abdominal ventilation movements (AVM) by causing a 59.4 % increase in the inter-burst interval and a 56.99 % decrease in the mean duration of AVM bursts. At the same time, the quantity of food consumed (sugar solution and pollen pastry) per honeybee per day was the same for both treated and untreated honeybees
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.