ObjectivesTo study the trajectories of body mass index (BMI) in Norway over five decades and to assess the differential influence of the obesogenic environment on BMI according to genetic predisposition.DesignLongitudinal study.SettingGeneral population of Nord-Trøndelag County, Norway.Participants118 959 people aged 13-80 years who participated in a longitudinal population based health study (Nord-Trøndelag Health Study, HUNT), of whom 67 305 were included in analyses of association between genetic predisposition and BMI.Main outcome measureBMI.ResultsObesity increased in Norway starting between the mid-1980s and mid-1990s and, compared with older birth cohorts, those born after 1970 had a substantially higher BMI already in young adulthood. BMI differed substantially between the highest and lowest fifths of genetic susceptibility for all ages at each decade, and the difference increased gradually from the 1960s to the 2000s. For 35 year old men, the most genetically predisposed had 1.20 kg/m2 (95% confidence interval 1.03 to 1.37 kg/m2) higher BMI than those who were least genetically predisposed in the 1960s compared with 2.09 kg/m2 (1.90 to 2.27 kg/m2) in the 2000s. For women of the same age, the corresponding differences in BMI were 1.77 kg/m2 (1.56 to 1.97 kg/m2) and 2.58 kg/m2 (2.36 to 2.80 kg/m2).ConclusionsThis study provides evidence that genetically predisposed people are at greater risk for higher BMI and that genetic predisposition interacts with the obesogenic environment resulting in higher BMI, as observed between the mid-1980s and mid-2000s. Regardless, BMI has increased for both genetically predisposed and non-predisposed people, implying that the environment remains the main contributor.
From a life-course perspective, genetic and environmental factors driving childhood obesity may have a lasting influence on health later in life. However, how obesity trajectories vary throughout the life-course remains unknown. Recently, Richardson et al. created powerful early life and adult gene scores for BMI in a comprehensive attempt to separate childhood and adult obesity. The childhood score was derived using questionnaire-based data administered to adults aged 40-69 regarding their relative body size at age 10, making it prone to recall and misclassification bias. We therefore attempted to validate the childhood and adult scores using measured BMI data in adolescence and adulthood among 66 963 individuals from the HUNT Study in Norway from 1963 to 2019. The predictive performance of the childhood score was better in adolescence and early adulthood while the predictive performance of the adult score was better in adulthood. In the age group 12-15.9 years, the variance explained by the childhood polygenic risk score was 6.7% versus 2.4% for the adult polygenic risk score. In the age group 24-29.9 years, the variance explained by the adult PRS was 3.9% versus 3.6% for the childhood PRS. Our findings support that genetic factors driving BMI differ at young age and in adulthood. Within the framework of multivariable Mendelian randomization, the validated childhood gene score can now be used to determine the consequence of childhood obesity on later disease.
Background Obesity has tripled worldwide since 1975 as environments are becoming more obesogenic. Our study investigates how changes in population weight and obesity over time are associated with genetic predisposition in the context of an obesogenic environment over 6 decades and examines the robustness of the findings using sibling design. Methods and findings A total of 67,110 individuals aged 13–80 years in the Nord-Trøndelag region of Norway participated with repeated standardized body mass index (BMI) measurements from 1966 to 2019 and were genotyped in a longitudinal population-based health study, the Trøndelag Health Study (the HUNT Study). Genotyping required survival to and participation in the HUNT Study in the 1990s or 2000s. Linear mixed models with observations nested within individuals were used to model the association between a genome-wide polygenic score (GPS) for BMI and BMI, while generalized estimating equations were used for obesity (BMI ≥ 30 kg/m2) and severe obesity (BMI ≥ 35 kg/m2). The increase in the average BMI and prevalence of obesity was steeper among the genetically predisposed. Among 35-year-old men, the prevalence of obesity for the least predisposed tenth increased from 0.9% (95% confidence interval [CI] 0.6% to 1.2%) to 6.5% (95% CI 5.0% to 8.0%), while the most predisposed tenth increased from 14.2% (95% CI 12.6% to 15.7%) to 39.6% (95% CI 36.1% to 43.0%). Equivalently for women of the same age, the prevalence of obesity for the least predisposed tenth increased from 1.1% (95% CI 0.7% to1.5%) to 7.6% (95% CI 6.0% to 9.2%), while the most predisposed tenth increased from 15.4% (95% CI 13.7% to 17.2%) to 42.0% (95% CI 38.7% to 45.4%). Thus, for 35-year-old men and women, respectively, the absolute change in the prevalence of obesity from 1966 to 2019 was 19.8 percentage points (95% CI 16.2 to 23.5, p < 0.0001) and 20.0 percentage points (95% CI 16.4 to 23.7, p < 0.0001) greater for the most predisposed tenth compared with the least predisposed tenth, defined using the GPS for BMI. The corresponding absolute changes in the prevalence of severe obesity for men and women, respectively, were 8.5 percentage points (95% CI 6.3 to 10.7, p < 0.0001) and 12.6 percentage points (95% CI 9.6 to 15.6, p < 0.0001) greater for the most predisposed tenth. The greater increase in BMI in genetically predisposed individuals over time was apparent after adjustment for family-level confounding using a sibling design. Key limitations include a slightly lower survival to date of genetic testing for the older cohorts and that we apply a contemporary genetic score to past time periods. Future research should validate our findings using a polygenic risk score constructed from historical data. Conclusions In the context of increasingly obesogenic changes in our environment over 6 decades, our findings reveal a growing inequality in the risk for obesity and severe obesity across GPS tenths. Our results suggest that while obesity is a partially heritable trait, it is still modifiable by environmental factors. While it may be possible to identify those most susceptible to environmental change, who thus have the most to gain from preventive measures, efforts to reverse the obesogenic environment will benefit the whole population and help resolve the obesity epidemic.
Autismespekterforstyrrelser hos barn i førskolealder i Sør-Trøndelag 2016-19 ORIGINALARTIKKEL NTNU Hun har bidra med datainnsamling, li eratursøk, statistiske analyser og hovedarbeidet med manuskriptet. Kristin Brobakken Eig er medisinstudent. Forfa eren har fylt ut ICMJE-skjemaet og oppgir ingen interessekonflikter. Habiliteringstjenesten for barn og unge St. Olavs hospital Hun har bidra med utforming av, innhold til og bearbeiding av manuskriptet. Maria Brandkvist er ph.d. og overlege. Forfa eren har fylt ut ICMJE-skjemaet og oppgir ingen interessekonflikter.Regionalt kunnskapssenter for barn og unge -psykisk helse og barnevern (RKBU Midt-Norge) Institu for psykisk helse NTNU Han har bidra med statistiske analyser. Stian Lydersen er professor i medisinsk statistikk. Forfa eren har fylt ut ICMJE-skjemaet og oppgir ingen interessekonflikter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.