In this paper, a number of strategies to overcome the deleterious effects of salinity on plants will be reviewed; these strategies include using molecular markers and genetic transformation as tools to develop salinity-tolerant genotypes, and some cultural techniques. For more than 12 years, QTL analysis has been attempted in order to understand the genetics of salt tolerance and to deal with component traits in breeding programmes. Despite innovations like better marker systems and improved genetic mapping strategies, the success of marker-assisted selection has been very limited because, in part, of inadequate experimental design. Since salinity is variable in time and space, experimental design must allow the study of genotype x environment interaction. Genetic transformation could become a powerful tool in plant breeding, but the growing knowledge from plant physiology must be integrated with molecular breeding techniques. It has been shown that the expression of several transgenes promotes a higher level of salt tolerance in some species. Despite this promising result, the development of a salt-tolerant cultivar by way of transgenesis has still not been achieved. Future directions in order to overcome the present limitations are proposed. Three cultural techniques have proved useful in tomato to overcome, in part, the effects of salinity: treatment of seedlings with drought or NaCl ameliorates the adaptation of adult plants to salinity; mist applied to tomato plants grown in Mediterranean conditions improves vegetative growth and yield in saline conditions; and grafting tomato cultivars onto appropriate rootstocks could reduce the effects of salinity.
With the aim of determining whether grafting could improve salinity tolerance of tomato (Lycopersicon esculentum Mill.), and what characteristics of the rootstock were required to increase the salt tolerance of the shoot, a commercial tomato hybrid (cv. Jaguar) was grafted onto the roots of several tomato genotypes with different potentials to exclude saline ions. The rootstock effect was assessed by growing plants at different NaCl concentrations (0, 25, 50, and 75 mM NaCl) under greenhouse conditions, and by determining the fruit yield and the leaf physiological changes induced by the rootstock after 60 d and 90 d of salt treatment. The grafting process itself did not affect the fruit yield, as non-grafted plants of cv. Jaguar and those grafted onto their own root showed the same yield over time under non-saline conditions. However, grafting raised fruit yield in Jaguar on most rootstocks, although the positive effect induced by the rootstock was lower at 25 mM NaCl than at 50 and 75 mM NaCl. At these higher levels, the plants grafted onto Radja, Pera and the hybrid VolgogradskijxPera increased their yields by approximately 80%, with respect to the Jaguar plants. The tolerance induced by the rootstock in the shoot was related to ionic rather than osmotic stress caused by salinity, as the differential fruit yield responses among graft combinations were mainly related to the different abilities of rootstocks to regulate the transport of saline ions. This was corroborated by the high negative correlation found between fruit yield and the leaf Na(+) or Cl(-) concentrations in salt-treated plants after 90 d of salt treatment. In conclusion, grafting provides an alternative way to enhance salt tolerance, determined as fruit yield, in the tomato, and evidence is reported that the rootstock is able to reduce ionic stress.
The sodium and potassium concentrations in leaf and stem have been genetically studied as physiological components of the vegetative and reproductive development in two populations of F(8) lines, derived from a salt sensitive genotype of Solanum lycopersicum cv. Cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Genetic parameters of ten traits under salinity and five of them under control conditions were studied by ANOVA, correlation, principal component and QTL analysis to understand the global response of the plant. Two linkage maps including some tomato flowering time and salt tolerance candidate genes encoding for SlSOS1, SlSOS2, SlSOS3, LeNHX1, LeNHX3, were used for the QTL detection. Thirteen and 20 QTLs were detected under salinity in the P and C populations, respectively, and four under control conditions. Highly significant and contributing QTLs (over 40%) for the concentrations of Na(+) and K(+) in stems and leaves have been detected on chromosome 7 in both the populations. This is the only genomic position where the concentration QTLs for both the cations locate together. The proportion of QTLs significantly affected by salinity was larger in the P population (64.3%, including all QTLs detected under control) than in the C population (21.4%), where the estimated genetic component of variance was larger for most traits. A highly significant association between the leaf area and fruit yield under salinity was found only in the C population, which is supported by the location of QTLs for these traits in a common region of chromososome C1. As far as breeding for salt tolerance is concerned, only two sodium QTLs (lnc1.1 and lnc8.1) map in genomic regions of C1 and C8 where fruit yield QTLs are also located but in both the cases the profitable allele corresponds to the salt sensitive, cultivated species. One of those QTLs, lnc1.1 might involve LeNHX3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.