COVID-19 pandemic is essentially a zoonotic disease. In this context, early in 2020, transmission from humans to certain animals began reporting; the number of studies has grown since. To estimate the pooled prevalence of SARS-CoV-2 natural infection in animals and to determine differences in prevalence between countries, years, animal types and diagnostic methods (RT-PCR or serological tests). A systematic literature review with meta-analysis using eight databases. Observational studies were included but analyzed separately. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95% CI) for prevalence studies and case series. After the screening, 65 reports were selected for full-text assessment and included for qualitative and quantitative analyses. A total of 24 reports assessed SARS-CoV-2 infection by RT-PCR, combining a total of 321,785 animals, yielding a pooled prevalence of 12.3% (95% CI 11.6%–13.0%). Also, a total of 17 studies additionally assessed serological response against SARS-CoV-2, including nine by ELISA, four by PRTN, one by MIA, one by immunochromatography (rest, two studies, the method was not specified), combining a total of 5319 animals, yielding a pooled prevalence of 29.4% (95% CI 22.9%–35.9%). A considerable proportion of animals resulted infected by SARS-CoV-2, ranking minks among the highest value, followed by dogs and cats. Further studies in other animals are required to define the extent and importance of natural infection due to SARS-CoV-2. These findings have multiple implications for public human and animal health. One Health approach in this context is critical for prevention and control.
Introduction: Coronaviruses are zoonotic viruses that include human epidemic pathogens such as the Middle East Respiratory Syndrome virus (MERS-CoV), and the Severe Acute Respiratory Syndrome virus (SARS-CoV), among others (e.g., COVID-19, the recently emerging coronavirus disease). The role of animals as potential reservoirs for such pathogens remains an unanswered question. No systematic reviews have been published on this topic to date. Methods: We performed a systematic literature review with meta-analysis, using three databases to assess MERS-CoV and SARS-CoV infection in animals and its diagnosis by serological and molecular tests. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95%CI). Results: 6,493articles were retrieved (1960-2019). After screening by abstract/title, 50 articles were selected for full-text assessment. Of them, 42 were finally included for qualitative and quantitative analyses. From a total of 34 studies (n=20,896 animals), the pool prevalence by RT-PCR for MERS-CoV was 7.2% (95%CI 5.6-8.7%), with 97.3% occurring in camels, in which pool prevalence was 10.3% (95%CI 8.3-12.3). Qatar was the country with the highest MERS-CoV RT-PCR pool prevalence, 32.6% (95%CI 4.8-60.4%). From 5 studies and 2,618 animals, for SARS-CoV, the RT-PCR pool prevalence was 2.3% (95%CI 1.3-3.3). Of those, 38.35% were reported on bats, in which the pool prevalence was 14.1% (95%CI0.0-44.6%). Discussion: A considerable proportion of infected animals tested positive, particularly by nucleic acid amplification tests (NAAT). This essential condition highlights the relevance of individual animals as reservoirs of MERS-CoV and SARS-CoV. In this meta-analysis, camels and bats were found to be positive by RT-PCR in over 10% of the cases for both; thus, suggesting their relevance in the maintenance of wild zoonotic transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.