Carbon nanotubes and graphene are some of the most intensively explored carbon allotropes in materials science. This interest mainly resides in their unique properties with electrical conductivities as high as 10 4 S cm À1 , thermal conductivities as high as 5000 W m À1 K and superior mechanical properties with elastic moduli on the order of 1 TPa for both of them. The possibility to translate the individual properties of these monodimensional (e.g. carbon nanotubes) and bidimensional (e.g. graphene) building units into twodimensional free-standing thick and thin films has paved the way for using these allotropes in a number of applications (including photocatalysis, electrochemistry, electronics and optoelectronics, among others) as well as for the preparation of biological and chemical sensors. More recently and while recognizing the tremendous interest of these two-dimensional structures, researchers are noticing that the performance of certain devices can experience a significant enhancement by the use of three-dimensional architectures and/ or aerogels because of the increase of active material per projected area. This is obviously the case as long as the nanometre-sized building units remain accessible so that the concept of hierarchical three-dimensional organization is critical to guarantee the mass transport and, as consequence, performance enhancement.Thus, this review aims to describe the different synthetic processes used for preparation of these threedimensional architectures and/or aerogels containing either any or both allotropes, and the different fields of application in which the particular structure of these materials provided a significant enhancement in the efficacy as compared to their two-dimensional analogues or even opened the path to novel applications. The unprecedented compilation of information from both CNT-and graphene-based three-dimensional architectures and/or aerogels in a single revision is also of interest because it allows a straightforward comparison between the particular features provided by each allotrope.
The aim of this review is to provide an exposition of some of the most recent applications of deep-eutectic solvents (DESs) in the synthesis of polymers and related materials. We consider that there is plenty of room for the development of fundamental research in the field of DESs because their compositional flexibility makes the number of DESs susceptible of preparation unlimited and so do the range of properties that DESs can attain. Ultimately, these properties can be transferred into the resulting materials in terms of both tailored morphologies and compositions. Thus, interesting applications can be easily envisaged, especially in those fields in which the preparation of high-tech products via low cost processes is critical. We hope that the preliminary work surveyed in this review will encourage scientists to explore the promising perspectives offered by DESs.
This review aims to demonstrate the capability of the ice-segregation-induced self-assembly (ISISA) process for the preparation of materials with highly sophisticated structures (e.g., hierarchical materials exhibiting organization at different scale levels). Cryogenic processes (consisting of the freezing, storage in the frozen state for a definite time, and defrosting of low - or high-molecular-weight precursors, as well as colloid systems, as either a water solution or suspension, or forming a hydrogel) have been widely used for the scaffolds preparation. However, the recent success in the control of the morphology (e.g., by unidirectional freezing in nitrogen liquid) and the possibility to extend the compositional nature of the resulting materials has recently attracted much attention to the ISISA process. Besides, this review aims to exemplify how the aqueous nature of the ISISA process allows for the in-situ incorporation of biological entities which provides not only hierarchy but also functionality to the resulting materials. The combination of hierarchy and functionality is characteristic of biological structures and must make these “smart” materials highly suitable in biotechnology and biomedicine. Thus, interesting examples of biocatalytic materials (for organic synthesis and fuel cell technologies) and biosensors, and scaffolds exhibiting enhanced functional (in terms of both biocompatibility and biodegradability) and mechanical performance, are reviewed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.