Gene regulation by dioxins is mediated by the dioxin receptor‐Arnt heterodimer, a ligand generated complex of two basic helix‐loop‐helix (bHLH)/Per‐Arnt‐Sim (PAS) transcription factors. By using dioxin receptor chimeras where the dimerization and DNA binding bHLH motif has been replaced by a heterologous DNA binding domain, we have detected an ability of Arnt to interact with the dioxin receptor via the PAS domain in a mammalian ‘hybrid interaction’ system. By coimmunoprecipitation assays, we have confirmed the ability of PAS domains of the dioxin receptor and Arnt to mediate independent heterodimerization in vitro. Selectivity for PAS dimerization was noted in our hybrid interaction system, as dioxin receptor or Arnt PAS‐mediated homodimers were not detected. Surprisingly, however, the PAS domain of Per could dimerize with both the dioxin receptor and Arnt subunits in vitro, and disrupt the ability of these subunits to form a DNA binding heterodimer. Moreover, ectopic expression of Per blocked dioxin signalling in mammalian cells. The PAS domains of the dioxin receptor and Arnt are therefore novel dimerizing regions critical in formation of a functional dioxin receptor‐Arnt complex, while the PerPAS domain is a potential negative regulator of bHLH/PAS factor function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.