Cognitive models have been paramount for modeling phenomena for which empirical data are unavailable, scarce, or only partially relevant. These approaches are based on methods dedicated to preparing experts and then to elicit their opinions about the variables that describe the phenomena under study. In time series forecasting exercises, elicitation processes seek to obtain accurate estimates, overcoming human heuristic biases, while being less time consuming. This paper aims to compare the performance of cognitive and mathematical time series predictors, regarding accuracy. The results are based on the comparison of predictors of the cognitive and mathematical models for several time series from the M3-Competition. From the results, one can see that cognitive models are, at least, as accurate as ARIMA models predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.