Apatite silicates are attracting significant interest as potential SOFC electrolyte materials. They are non-conventional oxide ion conductors in the sense that oxide ion interstitials, rather than vacancies, are the key defects. In this work we compare the structures of La9.6Si6O26.4 and La8Sr2Si6O26, both before and after hydration in order to gather information about the location of the interstitial oxide ion site. Neutron diffraction structural studies suggest that in the as-prepared La8Sr2Si6O26 and hydrated La8Sr2Si6O26, the interstitial oxide ion sites are close to the apatite channel centre. For La9.6Si6O26.4, a similar site close to the channel centre is observed, but on hydration of this particular sample, the interstitial site is shown to be significantly displaced away from the channel centre towards the SiO4 units. This can be explained by the need for additional displacement from the channel centre to accommodate the large amount of interstitial anions in this hydrated phase. The solid state (29)Si MAS NMR spectra are shown to be very sensitive to the different speciation exhibited by the La8Sr2Si6O26 and La9.6Si6O26.4 systems, with the former being dominated by regular SiO4 framework species and the latter being dominated by interruptions to this network caused by cation vacancies and interstitials. The corresponding (17)O MAS NMR study identifies a strong signal from the O atoms of the SiO4 groups, thus demonstrating that all of the O species in these systems are exchangeable O under heterogeneous gas phase conditions. In addition, interstitial O species attributed to pendant OH linkages on the Si positions are clearly identified and resolved, and these are removed on dehydration. This observation and assignment is corroborated by corresponding (1)H MAS NMR measurements. Overall the neutron diffraction work indicates that the interstitial site location in these apatite silicates depends on the anion content with progressive displacement towards the SiO4 tetrahedra on increasing anion content, while the observation of exchangeable O on the SiO4 groups is consistent with prior modelling predictions as to the importance on the silicate units in the conduction process.
The building sector is responsible for a significant amount of energy consumption and greenhouse gas (GHG) emissions. Thus, the monitoring, control and optimization of energy consumption in buildings will play a critical role in the coming years in improving energy efficiency in the building sector and in reducing greenhouse gas emissions. However, while there are a significant number of studies on how to make buildings smarter and manage energy through smart devices, there is a need for more research on integrating buildings with legacy equipment and systems. It is therefore vital to define mechanisms to improve the use of energy efficiency in existing buildings. This study proposes a new architecture (PHOENIX architecture) for integrating legacy building systems into scalable energy management systems with focus also on user comfort in the concept of interoperability layers. This interoperable and intelligent architecture relies on Artificial Intelligence/Machine Learning (AI/ML) and Internet of Things (IoT) technologies to increase building efficiency, grid flexibility and occupant well-being. To validate the architecture and demonstrate the impact and replication potential of the proposed solution, five demonstration pilots have been utilized across Europe. As a result, by implementing the proposed architecture in the pilot sites, 30 apartments and four commercial buildings with more than 400 devices have been integrated into the architecture and have been communicating successfully. In addition, six Trials were performed in a commercial building and five key performance indicators (KPIs) were measured in order to evaluate the robust operation of the architecture. Work is still ongoing for the trials and the KPIs’ analysis after the implementation of PHOENIX architecture at the rest of the pilot sites.
Boiling enhancement has been strongly linked to surface modification techniques for many decades. However, improvements in this field are always emerging, making it necessary to catch up with recently applied methods of increasing the critical heat flux and heat transfer coefficient. This review outlines the basic ideas of four surface modification techniques (roughness, artificial cavities, pin-fins, and wettability) and their effect on heat transfer performance. For each of the aforementioned surface modification techniques, cited works are classified and evaluated according to the type of boiling (flow or pool), the kind of working fluid used (water or other refrigerant), and the magnitude of heat exchanged (high or low heat flux). A respective enhancement factor, defined as the percentage of the performance of the corresponding plain surface, is calculated for each experimental work in order to compare them on a common ground. Comprehensive plots and tables are constructed herein using data from the cited works to allow direct comparison of the results. In addition, an effort is made through the cited works to identify the role of surface topography on heat transfer mechanisms and bubble dynamics. Finally, recommendations for future research are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.