Between May and July 2018, Ireland experienced an exceptional heat wave, which broke long-term temperature and drought records. These calm, stable conditions were abruptly interrupted by a second extreme weather event, Atlantic Storm Hector, in late June. Using high-frequency monitoring data, coupled with fortnightly biological sampling, we show that the storm directly affected the stratification pattern of Lough Feeagh, resulting in an intense mixing event. The lake restabilised quickly after the storm as the heatwave continued. During the storm there was a three-fold reduction in Schmidt stability, with a mixed layer deepening of 9.5 m coinciding with a two-fold reduction in chlorophyll a but a three-fold increase in total zooplankton biomass. Epilimnetic respiration increased and net ecosystem productivity decreased. The ratio of total nitrogen:total phosphorus from in-lake versus inflow rivers was decoupled, leading to a cascade effect on higher trophic levels. A step change in nitrogen:phosphorus imbalances suggested that the zooplankton community shifted from phosphorus to nitrogen nutrient constraints. Such characterisations of both lake thermal and ecological responses to extreme weather events are relatively rare but are crucial to our understanding of how lakes are changing as the impacts of global climate change accelerate.
The NDHA model comprehensively describes nitrous oxide (NO) producing pathways by both autotrophic ammonium oxidizing and heterotrophic bacteria. The model was calibrated via a set of targeted extant respirometric assays using enriched nitrifying biomass from a lab-scale reactor. Biomass response to ammonium, hydroxylamine, nitrite and NO additions under aerobic and anaerobic conditions were tracked with continuous measurement of dissolved oxygen (DO) and NO. The sequential addition of substrate pulses allowed the isolation of oxygen-consuming processes. The parameters to be estimated were determined by the information content of the datasets using identifiability analysis. Dynamic DO profiles were used to calibrate five parameters corresponding to endogenous, nitrite oxidation and ammonium oxidation processes. The subsequent NO calibration was not significantly affected by the uncertainty propagated from the DO calibration because of the high accuracy of the estimates. Five parameters describing the individual contribution of three biological NO pathways were estimated accurately (variance/mean < 10% for all estimated parameters). The NDHA model response was evaluated with statistical metrics (F-test, autocorrelation function). The 95% confidence intervals of DO and NO predictions based on the uncertainty obtained during calibration are studied for the first time. The measured data fall within the 95% confidence interval of the predictions, indicating a good model description. Overall, accurate parameter estimation and identifiability analysis of ammonium removal significantly decreases the uncertainty propagated to NO production, which is expected to benefit NO model discrimination studies and reliable full scale applications.
Extreme weather events are projected to increase in frequency and intensity as climate change continues. Heterotrophic bacteria play a critical role in lake ecosystems, yet little research has been done to determine how they are affected by such extremes. The purpose of this study was to use high-throughput sequencing to explore the bacterial community composition of a humic oligotrophic lake on the North Atlantic Irish coast and to assess the impacts on composition dynamics related to extreme weather events. Samples for sequencing were collected from Lough Feeagh on a fortnightly basis from April to November 2018. Filtration was used to separate free-living and particle-associated bacterial communities and amplicon sequencing was performed for the 16S rRNA V4 region. Two named storms, six high discharge events, and one drought period occurred during the sampling period. These events had variable, context-dependent effects on bacterial communities in Lough Feeagh. The particle-associated community was found to be more likely to respond to physical changes, such as mixing, while the free-living population responded to changes in nutrient and carbon concentrations. Generally, however, the high stability of the bacterial community observed in Lough Feeagh suggests that the bacterial community is relatively resilient to extreme weather events.
Variability is inherent to all natural ecosystems, yet the consequences of alterations to existing variability patterns in environmental factors expected under global change scenarios remain unclear. Motivated by observed and predicted changes, investigations including or focusing on variability are accumulating. However, no common framework exists for researching variability of single and multiple environmental factors, and mismatches between theory and experimental data at different levels challenge our current understanding of the role variability plays in nature. We identify sources of mismatches,
Extreme precipitation is occurring with greater frequency and intensity as a result of climate change. Such events boost the transport of allochthonous organic matter (allo-OM) to freshwater ecosystems, yet little is known about the impacts on dissolved organic matter (DOM) quality and seston elemental stoichiometry, especially for lakes in warm climates. A mesocosm experiment located in a Turkish freshwater lake was designed to simulate a pulse event leading to increased inputs of allo-OM by examining the individual effects of increasing water colour (HuminFeed®, HF), the direct effects of the extra energetic inputs (alder tree leaf leachate, L), and the interactions of the single treatment effects (combination of both sources, HFL), along with a comparison with unmanipulated controls. Changes in the DOM quality and nutrient stoichiometry of the allo-OM treatment additions was examined over the course of the experiments. Results indicated that there was an increase of high recalcitrant DOM components in the HF treatment, in contrast to an increase in less aromatic microbially derived molecules for the L treatment. Unexpectedly, seston C:P ratios remained below a severe P-limiting threshold for plankton growth and showed the same temporal pattern in all mesocosms. In contrast, seston N:P ratios differed significantly between treatments, with the L treatment reducing P-limiting conditions, whilst the HF treatment increased them. The effects of the combined HFL treatment indicated an additive type of interaction and chlorophyll-a was highest in the HFL treatment. Our results demonstrate that accounting for the optical and stoichiometric properties of experimental allo-OM treatments is crucial to improve the capacity to explain extrapolated conclusions regarding the effects of climate driven flooding on freshwater ecosystems in response to global climate change. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.