The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana).
The aim of this study was to evaluate the transfer of the most widely used antibiotics in dairy goats from milk to cheese as well as their effect on the cheesemaking process and cheese characteristics during ripening. Antibiotic-free milk was spiked individually with 7 veterinary drugs (amoxicillin, benzylpenicillin, cloxacillin, erythromycin, ciprofloxacin, enrofloxacin, and oxytetracycline) at an equivalent concentration of the European Union maximum residue limit. Spiked goat milk was used to make mature Tronchón cheeses, which were analyzed at 0, 30, and 60 d of maturation to determine pH, chemical composition, proteolytic and lipolytic activities, and color and textural properties. A sensory evaluation of 60-d ripened cheeses was carried out. Cheeses from raw antibiotic-free goat milk were made simultaneously to be used as reference. The cheese-making process was unaffected by the presence of most antibiotics evaluated. Only erythromycin and oxytetracycline significantly increased the time required for cheese production (122 ± 29 and 108 ± 25 min, respectively). However, variable amounts of antibiotics, ranging from 7.4 to 68%, were transferred from milk to cheese, with oxytetracycline and quinolones showing the highest retention rates. In general, antibiotic residues present in the cheeses at the beginning of maturation decrease significantly along time. Thus, β-lactams and erythromycin residues were not detectable after 30 d of ripening. However, relatively high concentrations of enrofloxacin (148 ± 12 µg/kg) and ciprofloxacin (253 ± 24 µg/kg) residues were found in the cheeses after 60 d of maturation. The quality characteristics of the Tronchón cheeses were only slightly affected by such substances, with few significant differences in the free fatty acid concentration and color and textural properties of the cheeses. Results herein indicate that the use of goat milk containing antibiotics, such as quinolones, at the European Union maximum residue limit for cheese production could adversely affect the safety of the final products because relatively high concentrations of these substances could be retained in soft and semi-mature cheeses, making it necessary to assess the risk for consumer health. Studies on the partition of the antibiotic substances during cheese-making, using specific technologies, would be convenient to guarantee the safety of cheese and related products.
The Charm maximum residue limit β-lactam and tetracycline test (Charm MRL BLTET; Charm Sciences Inc., Lawrence, MA) is an immunoreceptor assay utilizing Rapid One-Step Assay lateral flow technology that detects β-lactam or tetracycline drugs in raw commingled cow milk at or below European Union maximum residue levels (EU-MRL). The Charm MRL BLTET test procedure was recently modified (dilution in buffer and longer incubation) by the manufacturers to be used with raw ewe and goat milk. To assess the Charm MRL BLTET test for the detection of β-lactams and tetracyclines in milk of small ruminants, an evaluation study was performed at Instituto de Ciencia y Tecnologia Animal of Universitat Politècnica de València (Spain). The test specificity and detection capability (CCβ) were studied following Commission Decision 2002/657/EC. Specificity results obtained in this study were optimal for individual milk free of antimicrobials from ewes (99.2% for β-lactams and 100% for tetracyclines) and goats (97.9% for β-lactams and 100% for tetracyclines) along the entire lactation period regardless of whether the results were visually or instrumentally interpreted. Moreover, no positive results were obtained when a relatively high concentration of different substances belonging to antimicrobial families other than β-lactams and tetracyclines were present in ewe and goat milk. For both types of milk, the CCβ calculated was lower or equal to EU-MRL for amoxicillin (4 µg/kg), ampicillin (4 µg/kg), benzylpenicillin (≤ 2 µg/kg), dicloxacillin (30 µg/kg), oxacillin (30 µg/kg), cefacetrile (≤ 63 µg/kg), cefalonium (≤ 10 µg/kg), cefapirin (≤ 30 µg/kg), desacetylcefapirin (≤ 30 µg/kg), cefazolin (≤ 25 µg/kg), cefoperazone (≤ 25 µg/kg), cefquinome (20 µg/kg), ceftiofur (≤ 50 µg/kg), desfuroylceftiofur (≤ 50µg/kg), and cephalexin (≤ 50 µg/kg). However, this test could neither detect cloxacillin nor nafcillin at or below EU-MRL (CCβ >30 µg/kg). The CCβ for tetracyclines was also lower than EU-MRL for chlortetracycline (ewe milk: ≤ 50 µg/kg; goat milk: 75 µg/kg), oxytetracycline (≤ 50 µg/kg), and tetracycline (≤ 50 µg/kg). Regarding the 4-epimers of these tetracyclines only 4-epioxytetracycline was detected by the Charm MRL BLTET test below EU-MRL (ewe milk: 75 µg/kg; goat milk: ≤ 50 µg/kg). Acidiol had no effect on the performance of the test. The Charm MRL BLTET test could be used routinely with adapted test procedure for the fast screening of ewe and goat milk.
The adult mouse model of Giardia lamblia infection serves as an excellent animal model to understand the immunological mechanisms involved in the control and clearance of Giardia infection. Little is known about the G. lamblia-specific antigens that stimulate the humoral immune response in this model of giardiasis. We analysed the secretory and systemic antibody responses to G. lamblia during primary and secondary infection in C3H/HeJ adult mice. Faecal IgA and Serum IgG anti-G. lamblia antibodies were observed at week 2 post-infection. Serum IgG responses remained constant over the next several weeks, whereas faecal IgA titres continued to rise from weeks 2-6 post-infection. Western blot analysis revealed that intestinal IgA and serum IgG antibody responses were directed toward several distinct proteins of G. lamblia. Certain proteins appeared to be recognized by both faecal IgA and serum IgG, whereas other antigens were specific for either the secretory or systemic antibody responses. G. lamblia primary and secondary infections were associated with differences in the antibody recognition pattern. The biochemical and immunological characterization of these antigens will help us to better understand the immunobiology of the G. lamblia-host interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.