Recent reports emphasize the importance of mitochondria in white adipose tissue biology. In addition to their crucial role in energy homeostasis, mitochondria are the main site of reactive oxygen species generation. When moderately produced, they function as physiological signaling molecules. Thus, mitochondrial reactive oxygen species trigger hypoxia-dependent gene expression. Therefore the present study tested the implication of mitochondrial reactive oxygen species in adipocyte differentiation and their putative role in the hypoxiadependent effect on this differentiation. Pharmacological manipulations of mitochondrial reactive oxygen species generation demonstrate a very strong and negative correlation between changes in mitochondrial reactive oxygen species and adipocyte differentiation of 3T3-F442A preadipocytes. Moreover, mitochondrial reactive oxygen species positively and specifically control expression of the adipogenic repressor CHOP-10/ GADD153. Hypoxia (1% O 2 ) strongly increased reactive oxygen species generation, hypoxia-inducible factor-1 and CHOP-10/GADD153 expression, and inhibited adipocyte differentiation. All of these hypoxia-dependent effects were partly prevented by antioxidants. By using hypoxia-inducible factor-1␣ (HIF-1␣)-deficient mouse embryonic fibroblasts, HIF-1␣ was shown not to be required for hypoxia-mediated CHOP-10/GADD153 induction. Moreover, the comparison of hypoxia and CoCl 2 effects on adipocyte differentiation of wild type or HIF-1␣ deficient mouse embryonic fibroblasts suggests the existence of at least two pathways dependent or not on the presence of HIF-1␣. Together, these data demonstrate that mitochondrial reactive oxygen species control CHOP-10/GADD153 expression, are antiadipogenic signaling molecules, and trigger hypoxia-dependent inhibition of adipocyte differentiation.White adipose tissue is the main energy store in adult mammals and displays great plasticity according to the energy needs of the organism. Adipocyte differentiation results from a subtle balance of sequential and interdependent transcription factors expression that activate or inhibit promoters of adipogenic genes.
Coenzyme Q (CoQ) is not only the single antioxidant synthesized in humans but also an obligatory element of mitochondrial functions. We have previously reported CoQ deficiency in white adipose tissue of ob/ob mice. We sought to determine (i) whether this deficit exists in all species and its relevance in human obesity and (ii) to what extent CoQ could be involved in adipocyte differentiation. Here we identified in rodents as well as in humans a specific very strong nonlinear negative correlation between CoQ content in subcutaneous adipose tissue and obesity indexes. This striking correlation reveals a threshold value similar in both species. This relative deficit in CoQ content in adipose tissue rapidly took place during the time course of high-fat-diet-induced obesity in mice. Adipocyte differentiation was assessed in vitro using the preadipocyte 3T3-F442A cell line. When CoQ synthesis was inhibited by a pharmacological approach using chlorobenzoic acid, this strongly triggered adipose differentiation. In contrast, adipogenesis was strongly inhibited when a long-term increase in CoQ content was obtained by overexpressing human 4-hydroxy benzoate acid polyprenyltransferase gene. Altogether, these data suggest that a strict level of CoQ remains essential for adipocyte differentiation, and its impairment is associated with obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.