The design and synthesis of novel examples of multifunctional magnetic materials based on the so-called coordination polymers (CPs) have become very attractive for chemists and physicists due to their potential applications in nanoscience and nanotechnology. However, their preparation is still an experimental challenge, which requires a deep knowledge of coordination chemistry and large skills in organic chemistry. The recent advances in this field using a molecular-programmed approach based on rational self-assembly methods which fully exploit the versatility of the coordination chemistry of the barely explored and evergreen family of N-substituted aromatic oligo(oxamato) ligands are presented in this feature article. These exploratory studies have revealed a wide variety of interesting multifunctional magnetic materials such as optically-active chiral and luminescent magnets or dynamic porous magnets as candidates for chemical sensing. Our feeling, however, is that we have only scratched the surface of the topic and that there are many more exciting brand-new molecule-based materials waiting to be discovered.
Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when ser...
Double-stranded anionic dinuclear copper(II) metallacyclic complexes of the paracyclophane type [Cu2L2](4-) have been prepared by the Cu(II)-mediated self-assembly of different para-phenylenebis(oxamato) bridging ligands with either zero-, one-, or four-electron-donating methyl substituents (L=N,N'-para-phenylenebis(oxamate) (ppba; 1), 2-methyl- N,N'-para-phenylenebis(oxamate) (Meppba; 2), and 2,3,5,6-tetramethyl- N,N'-para-phenylenebis(oxamate) (Me4ppba; 3)). These complexes have been isolated as their tetra-n-butylammonium (1 a-3 a), lithium(I) (1 b-3 b), and tetraphenylphosphonium salts (1 c-3 c). The X-ray crystal structures of 1 a and 3 c show a parallel-displaced π-stacked conformation with a smaller deviation from perpendicularity between the two benzene rings and the basal planes of the square planar Cu(II) ions when increasing the number of methyl substituents (average dihedral angles (ϕ) of 58.72(7) and 73.67(5)° for 1 a and 3 c, respectively). Variable-temperature (2.0-300 K) magnetic-susceptibility measurements show an overall increase of the intramolecular antiferromagnetic coupling with the number of methyl substituents onto the para-phenylene spacers (-J=75-95, 100-124, and 128-144 cm(-1) for 1 a-c, 2 a-c, and 3 a-c, respectively; H=-JS1×S2). Cyclic voltammetry (CV) measurements show a reversible one-electron oxidation of the double polymethyl-substituted para-phenylenediamidate bridging skeleton at a relatively low formal potential that decreases with the number of methyl substituents (E1=+0.33, +0.24, and +0.15 V vs. SCE for 1-3, respectively). The monooxidized dicopper(II) π-radical cation species 3' prepared by the chemical oxidation of 3 with bromine exhibits intense metal-to-ligand charge-transfer (MLCT) transitions in the visible and near-IR (λmax=595 and 875 nm, respectively) regions together with a rhombic EPR signal with a seven-line splitting pattern due to hyperfine coupling with the nuclear spin of the two Cu(II) ions. Density functional (DF) calculations for 3' evidence a characteristic iminoquinonoid-type short-long-short alternating sequence of C-N and C-C bonds for both tetramethyl-para-phenylenediamidate bridges and a large amount of spin density of negative sign mainly delocalized along each of the four benzene C atoms directly attached to the amidate N atoms, which is in agreement with a fully delocalized π-stacked monoradical ligand description. Hence, the spins of the two Cu(II) ions (SCu=1/2) that are antiparallel aligned in 3 (OFF state) become parallel in 3' (ON state). Further developments may be then envisaged for this new permethylated dicopper(II) paracyclophane with a redox noninnocent ligand as a prototype for molecular magnetic electroswitch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.