The slow aggregation of monodisperse, polydisperse, and preaggregated silica nanoparticles was studied with an electrospray-scanning mobility particle sizer (ES-SMPS) and time-resolved synchrotron radiation-small-angle X-ray scattering (SR-SAXS). Aggregation was induced by varying the NaCl concentration to obtain a fixed gelation time of ∼40 min. The combination of these techniques provides a unique tool to monitor and resolve the aggregate development in detail. The monodisperse spherical particles were converted to dimers, trimers, and eventually larger clusters as the aggregation proceeded, while the polydisperse spherical particles formed large clusters at an early stage. The initial particle shape and polydispersity had profound effects on the morphology of the aggregates; spherical primary particles produced compact spherical clusters, whereas the preaggregated dispersions formed open, elongated aggregates. All dispersions produced gels that contained free primary particles well past the point of gelation. The stability of the aggregates and the gel morphology were interpreted by relating to the structure of porous gel layers around the particles.
Information about Cd distribution inside single municipal solid waste and biomass fly ash particles is fundamental since it affects its leachability. The internal 2D distributions of the main and trace elements in such highly inhomogeneous matrixes were successfully determined by means of the combined synchrotron radiation induced micro X-ray fluorescence (micro-SRXRF) and tomography (micro-SRXRFT) techniques. Scanning micro-SRXRF measurements show Cd elemental distribution within single fly ash particles to be inhomogeneous, but no information can be obtained about its internal distribution. During micro-SRXRFT analysis, single fly ash particles are successively measured by a rotational-translational scan in a VH=2 x 5 microm2 microbeam. The 2D internal elemental distribution images, obtained by the modified simultaneous algebraic reconstruction technique algorithm, provide the size and the location of Cd-containing areas together with the location of other measurable elements. Results showed Cd concentration to be higher in the core of the fly ash particles analyzed rather than on the surface of the particles. Moreover, in both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. A possible mechanism for Cd adsorption on the fly ash particles is proposed based on the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.