It is known that renal tissue plays a role in normal iron homeostasis. The current study examines kidney function in iron metabolism under hemolytic anemia studying renal expression of Prohepcidin, Ferroportin (MTP1), and divalent metal transporter 1 (DMT1). The relationship between these proteins and iron pigments was also investigated. Immunohistochemical procedures to study renal expression of Prohepcidin, MTP1, and DMT1 were performed in healthy and anemic mice. Renal tissue iron was determined by Prussian blue iron staining. To assess anemia evolution and erythropoietic recovery, we used conventional tests. In healthy mice, Prohepcidin expression was marked in proximal tubules and inner medulla and absent in outer medulla. Cortical tissue of healthy mice also showed MTP1 immunostaining, mainly in the S2 segment of proximal tubules. Medullar tissue showed MTP1 expression in the inner zone. In addition, S2 segments showed intense DMT1 immunoreactivity with homogeneous DMT1 distribution throughout renal medulla. The main cortical findings in hemolytic anemia were in S2 segments of proximal tubules where we found that decreased Prohepcidin expression coincided with an increment in Ferroportin and DMT1 expression. This expression pattern was concomitant with increased iron in the same tubular zone. However, in medullar tissue both Prohepcidin and MTP1 decreased and DMT1 was detected mainly in larger diameter tubules. Our findings clearly demonstrate that in hemolytic anemia, renal Prohepcidin acts in coordination with renal Ferroportin and DMT1, indicating the key involvement of kidney in iron homeostasis when iron demand is high. Further research is required to learn more about these regulatory mechanisms.
New Findings r What is the central question of this study?The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. r What is the main finding and its importance?We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin.Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1) ,
S U M M A R Y Ferroportin (FPN), the only iron exporter identified to date, participates in iron release from enterocytes and macrophages, regulating its absorption and recycling. We used a murine model of experimental hemolytic anemia to study adaptive changes in the localization of FPN in duodenum, liver, and spleen. FPN was assessed by IHC in healthy and anemic mice using rabbit anti-mouse FPN polyclonal antibodies. Goat-labeled polymer-horseradish peroxidase anti-rabbit Envision1System (DAB) was used as secondary antibody. Tissue iron was studied by Prussian blue iron staining. Anemia evolution and erythropoietic recovery was assessed using conventional hematological tests. Healthy mice showed mainly supranuclear expression of FPN in enterocytes and a weak basolateral expression, whereas in anemic mice, the expression was detected mainly at the basolateral membrane (days 4 and 5). Red pulp macrophages of healthy mice showed FPN-hemosiderin colocalization. In the liver of healthy mice, FPN was mainly cytoplasmic, whereas in anemic mice, it was redistributed to the cell membrane. Our findings clearly show that anemia induces adaptive changes in FPN expression, contributing to anemia restoration by increasing available iron. FPN expression in the membrane is the main pathway of iron release. Our data indicate that iron homeostasis in vivo is maintained through the coordinated expression of this iron exporter in both intestinal and phagocytic cells. (J Histochem Cytochem 57:9-16, 2009)
To analyze the interconnection between erythropoiesis and iron metabolism, one of the issues raised in this study was to know iron bioavailability under physiopathological conditions. Our aim was to understand the functional axis response composed of erythropoietin (Epo)-hepcidin-ferroportin (FPN), when 2 dysfunctional states coexist, using an animal model of iron overload followed by hypoxia. FPN and prohepcidin were assessed by immunohistochemistry using rabbit anti-mouse FPN polyclonal and prohepcidin monoclonal antibodies. Goat-labeled polymer - horseradish peroxidase anti-rabbit EnVision + System (DAB) was used as the secondary antibody. Epo levels were measured by ELISA. Tissue iron was studied by Prussian blue iron staining. Erythropoietic response was assessed using conventional hematological tests. Iron overload increased prohepcidin that remained high in hypoxia, coexisting with high levels of Epo in hypoxia, with or without iron overload. In hypoxia, FPN was clearly evident in reticuloendothelial macrophages, more than in hypoxia with iron overload. Interestingly, duodenal FPN was clearly identified on the basolateral membrane in hypoxia, with or without iron overload. Our data indicate that 2 signals could induce the cell-specific response as follows: (i) iron signal, induced prohepcidin, which reduced reticuloendothelial FPN and reduced iron availability; and (ii) hypoxia signal, stimulated Epo, which affected iron absorption by stabilizing duodenal FPN and allowed iron supply to erythropoiesis independently of store size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.