The aim of this work was to evaluate the influence of different substrates in the performance of a horizontal flow constructed wetland employed in dairy farm wastewater treatment. Typha domingensis was chosen for this study due to its high productivity and efficiency in nutrient removal. Fifteen microcosm-scale reactors simulating horizontal flow constructed wetlands were disposed in a greenhouse in triplicate. Five substrates (river gravel, gravel, LECA, river gravel + zeolite and gravel + zeolite) were evaluated. Real effluent with previous treatment was used. Dairy farm effluents favoured T. domingensis growth, probably due to their high nutrient concentrations. The treatments with the different substrates studied were efficient in the treatment of the dairy farm effluent obtaining ammonium ([Formula: see text]) and total phosphorus (TP) removals between 88-99% and 86-99%, respectively. Removal efficiencies were significantly higher in treatments using LECA and combined substrate (gravel + zeolite). After treatment, the quality of the final effluent was significantly improved. Outlet effluent complied with regulations and could be discharged into the environment.
The aim of this work was to evaluate the efficiency of horizontal subsurface flow constructed wetlands (HSFCWs) planted with Typha domingensis and Phragmites australis in the final treatment of dairy wastewater. Ten microcosms-scale reactors simulating HSFCWs were arranged outdoors under a semi-transparent plastic roof. Five replicates were planted with T. domingensis and five with P. australis. In both cases, light expanded clay aggregate (LECA) 10/20 was used as a substrate. Real effluent with previous treatment was used. In order to evaluate contaminant removal efficiencies in each reactor, pH, electrical conductivity, suspended solids, ammonium, nitrate, nitrite, total phosphorus, and chemical oxygen demand (COD) were analyzed before and after treatment. HSFCWs planted with T. domingensis and P. australis were efficient for the final treatment of dairy wastewater. Removal efficiencies obtained in microcosms planted with both macrophytes were over 96% for ammonium and nitrite. Nitrate removal efficiency was 39%. COD decreased along the experiment near 75% for both treatments. High removal percentages for suspended solids (78.4-81.1%) were also achieved. However, systems planted with T. domingensis were significantly more efficient for total phosphorus removal (88.5%) than those planted with P. australis (71.6%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.