Acute gastric mucosal injury is a common disorder of the gastrointestinal tract and the search for new therapeutics is ongoing. The aim of this study is to update and expand the information related to the most widely used rat models of acute gastric ulcer, the ethanol‐induced ulcer and the indomethacin‐induced ulcer. These two models are compared in terms of macroscopic and microscopic features. Experimentally, ethanol was given orally in a single dose and indomethacin was subcutaneously injected into male Wistar rats. After ulcerative challenges, the stomachs were removed and visually inspected. Anti‐ulcerative drugs were used to validate the models. Histological analysis of the stomachs determined the microscopic score. The methodology used for model evaluation applied to macroscopic and microscopic gastric lesions. With these methods it was possible to induce lesions in the gastric mucosa. Microscopic evaluation permitted assessment of the inflammatory and apoptotic impact in the mucosa not observable by macroscopic evaluation. Groups of animals were treated with two standard drugs: sulcralfate suspension or lansoprazole solution. Both drugs reduced macroscopic and microscopic lesions, particularly the hemorrhagic ones. Both models induced acute gastric mucosal injury and no single evaluation method can address all the aspects of the pathology of gastric lesions. As a complement to macroscopic evaluation, microscopy appears to be a relevant tool to selectively identify specific aspects of the development of mucosal injury, quantify the extent of lesions, and contribute to an appropriate interpretation of results. The score systems established here offer a reliable method for testing antiulcer drugs.
Liver ischaemia-reperfusion injury (IRI) may occur during hepatic surgery and is unavoidable in liver transplantation. Superoxide dismutase enzymosomes (SOD-enzymosomes), liposomes where SOD is at the liposomal surface expressing enzymatic activity in intact form without the need of liposomal disruption, were developed with the aim of having a better insight into its antioxidant therapeutic outcome in IRI. We also aimed at validating magnetic resonance microscopy (MRM) at 7T as a tool to follow IRI. SOD-enzymosomes were characterized and tested in a rat ischaemia-reperfusion model and the therapeutic outcome was compared with conventional long circulating SOD liposomes and free SOD using biochemical liver injury biomarkers, histology and MRM. MRM results correlated with those obtained using classical biochemical biomarkers of liver injury and liver histology. Moreover, MRM images suggested that the therapeutic efficacy of both SOD liposomal formulations used was related to prevention of peripheral biliary ductular damage and disrupted vascular architecture. Therefore, MRM at 7T is a useful technique to follow IRI. SOD-enzymosomes were more effective than conventional liposomes in reducing liver ischaemia-reperfusion injury and this may be due to a short therapeutic window.
Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.