Brain defective cholesterol homeostasis has been associated with neurologic diseases, such as Alzheimer's and Huntington's disease. The elimination of cholesterol from the brain involves its conversion into 24(S)-hydroxycholesterol by CYP46A1, and the efflux of this oxysterol across the bloodbrain barrier. Herein, we identified the regulatory elements and factors involved the human CYP46A1 expression. Functional 5¢deletion analysis mapped a region spanning from nucleotides -236/-64 that is indispensable for basal expression of this TATA-less gene. Treatment of SH-SY5Y cells with mithramycin A resulted in a significant reduction of promoter activity, suggesting a role of Sp family of transcription factors in CYP46A1 regulation. Combination of Sp1, Sp3, and Sp4 over-expression studies in Drosophila SL-2 cells, and systematic promoter mutagenesis identified Sp3 and Sp4 binding to four GC-boxes as required and sufficient for high levels of promoter activity. Moreover, Sp3 and Sp4 were demonstrated to be the major components of the protein-DNA complexes observed in primary rat cortical extracts. Our results suggest that the cell-type specific expression of Sp transcription factors -substitution of Sp1 by Sp4 in neurons -is responsible for the basal expression of the CYP46A1 gene. This study delineates for the first time the mechanisms underlying the human CYP46A1 transcription and thereby elucidates potential pathways underlying cholesterol homeostasis in the brain.
Genetic predisposition, environmental toxins and aging contribute to Parkinson's disease (PD) multifactorial etiology. Weak environmental neurotoxic factors may accumulate over time increasing the disease risk in genetically predisposed subjects. Polymorphic genes encoding drug-metabolizing-enzymes (DMEs) are considered to account for PD susceptibility by determining individual toxic response variability. In this work, the allelic distributions and genotype associations of three major brain-expressed DMEs were characterized, in sporadic PD cases and controls. No significant association was found between CYP2D6 genotype and PD, but subjects with extensive metabolizer (EM) CYP2D6 phenotype, and the variant GSTP1*B genotype were at significantly higher PD risk than the corresponding poor or intermediary metabolizers (CYP2D6 poor metabolizer phenotype+intermediary metabolizers). A significant association was observed between the GSTP1*B allele and zygosity with PD (GSTP1*A/*B- 51.58%/34.37%, odds ratio (OR) = 2.29; 95% confidence interval (95% CI) = 1.25-4.18; *B/*B- 6.32%/1.05%, OR = 10.67; 95% CI = 1.19-94.79). This association was particularly strong in the elder patients group (> or =69 year) who showed double PD risk for GSTP1*B heterozygous, whilst GSTP1*B/*B homozygous were exclusively found amongst patients. An interaction between GSTM1 and GSTP1 was observed in this late onset PD group. The present results suggest that native GSTP1 encoding the fully active transferase variant should play a relevant role in dopaminergic neuroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.