The RAS gene family, responsible for signal transduction within the mitogen activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K) pathways, is frequently involved in carcinogenesis, and alterations in its member genes can be detected, with variable frequency, in a wide variety of solid and hematological cancers. These alterations may behave as prognostic-predictive biomarkers and driver mutations, making them an interesting therapeutic target. Since their discovery, many strategies have been pursued to act on their signaling pathways. Indeed, in clinical practice, KRAS, the most prominent member of the RAS gene family, represents an especially elusive target in most malignancies; pathway inhibition is carried out upstream, on the EGFR receptor, or downstream, most frequently on the BRAF/MEK/ERK cascade. Recently, clinically relevant direct RAS inhibition has been successfully achieved with the development of potent and selective covalent inhibitors of KRAS c.34G>T (p.G12C). These latest-generation drugs represent both a new and interesting tool in the therapeutic armamentarium and a symbolic end to the myth of KRAS undruggability. However, their clinical relevance and appropriate place in treatment strategies remain to be determined.
The best treatment strategy for oesophageal cancer patients achieving a complete clinical response after neoadjuvant chemoradiation is a burning topic. The available diagnostic tools, such as 18F-FDG PET/CT performed routinely, cannot accurately evaluate the presence or absence of the residual tumour. The emerging field of radiomics may encounter the critical challenge of personalised treatment. Radiomics is based on medical image analysis, executed by extracting information from many image features; it has been shown to provide valuable information for predicting treatment responses in oesophageal cancer. This systematic review with a meta-analysis aims to provide current evidence of 18F-FDG PET-based radiomics in predicting response treatments following neoadjuvant chemoradiotherapy in oesophageal cancer. A comprehensive literature review identified 1160 studies, of which five were finally included in the study. Our findings provided that pooled Area Under the Curve (AUC) of the five selected studies was relatively high at 0.821 (95% CI: 0.737–0.904) and not influenced by the sample size of the studies. Radiomics models exhibited a good performance in predicting pathological complete responses (pCRs). This review further strengthens the great potential of 18F-FDG PET-based radiomics to predict pCRs in oesophageal cancer patients who underwent neoadjuvant chemoradiotherapy. Additionally, our review imparts additional support to prospective studies on 18F-FDG PET radiomics for a tailored treatment strategy of oesophageal cancer patients. Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42021274636.
Abstract. Pancreatic cancer is the fourth leading cause of cancer mortality and is associated with a poor overall survival even when diagnosed early and considered resectable. Complete surgical removal with negative histological margins is an independent predictor of survival and remains the only potential curative treatment. In borderline resectable pancreatic adenocarcinoma (BRPAC), preoperative systemic therapy may increase resectability and margin-negative resection rate. There is no current consensus on the optimal chemotherapy regimen for BRPAC. The present case describes a patient with BRPAC who achieved a pathological complete response to neoadjuvant FOLFIRINOX (folinic acid, fluorouracil, irinotecan and oxaliplatin), but early relapse following a pancreaticoduodenectomy without vascular resection, with an uneventful postoperative course, except for a pulmonary embolism.
Treatment of BRAF-mutant colorectal cancer (CRC) traditionally represents an unmet need, mainly due to its unfavourable prognostic outlook, limited options for targeted treatment and scarce benefit from epithelial growth-factor receptor (EGFR) inhibitors. Recently, the development of BRAF V600E inhibitors has expanded the therapeutic armamentarium, although exclusive targeting of BRAF has proved to be an unsuccessful strategy due to reactivation of the mitogen-activated protein kinase pathway through multiple escape mechanisms. Combination strategies that exploit simultaneous inhibition of BRAF, EGFR and/or mitogen-activated protein/extracellular signal-regulated kinase have achieved greater success, with the BEACON CRC trial providing the first evidence for an improvement in survival with a chemotherapy-free approach in pre-treated patients with CRC, leading to regulatory approval for the combination of encorafenib and cetuximab. Subsequent research efforts attempt to build on these foundations, exploring targeted maintenance strategies and conceivably moving the combination towards the first line of therapy soon, as well as laying the foundation for the use of liquid biopsy as a guidance tool in a precision oncology approach.
Acinar cell carcinoma (ACC) of the pancreas is a relatively rare malignant neoplasm that constitutes about 1% of all pancreatic exocrine tumors. The disease is generally managed similarly as pancreatic ductal adenocarcinoma (PDAC), with surgical resection for localized disease and systemic chemotherapy in the metastatic setting. Here, we present a case of a 69-year-old patient with ACC of the pancreatic head treated with a multidisciplinary approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.