Rainfall occurring during the developmental stages of sweet cherries on the tree can lead to significant preharvest losses, primarily due to fruit cracking. Certain cultivars exhibit a higher susceptibility to such losses, particularly when persistent rains coincide with advanced phenological stages. The current study aims to investigate the efficacy of preharvest methyl jasmonate (MeJA) applications at harvest and during distinct developmental ripening stages in mitigating sweet cherry cracking at harvest and on-tree ripening. Preharvest foliar applications of 0.5 mM MeJA were applied across various sweet cherry cultivars, including ‘Prime Giant’, ‘Early Lory’, ‘Sweetheart’, and ‘Staccato’. By conducting this experiment over four growing seasons, we evaluated the impact of this natural elicitor on the cracking tolerance of these cultivars. The results of our analysis indicate that MeJA preharvest treatments effectively reduce fruit cracking, enhancing abiotic stress tolerance. Additionally, these treatments induce a general delay in fruit ripening on the tree across the examined cultivars. This delayed ripening effect is reflected in several quality parameters at harvest, such as the fruit firmness, external colour, total soluble solids, and total acidity. These parameters in the MeJA-treated fruit were delayed compared to the control fruit or remained unaffected for the total acidity. Conversely, the MeJA treatments delayed the accumulation of total polyphenols, exhibiting a minimal impact on reducing pedicel browning. The enhanced tolerance to cracking and delayed ripening attributed to the MeJA preharvest treatments could be helpful for plot management. Consequently, these MeJA-based preharvest treatments hold potential as valuable tools in adapting to climate change and mitigating abiotic stress in sweet cherry.
Spain is the world’s leading producer of cherimoya, a climacteric fruit highly appreciated by consumers. However, this fruit species is very sensitive to chilling injury (CI), which limits its storage. In the present experiments, the effects of melatonin applied as dipping treatment on cherimoya fruit CI, postharvest ripening and quality properties were evaluated during storage at 7 °C + 2 days at 20 °C. The results showed that melatonin treatments (0.01, 0.05, 0.1 mM) delayed CI, ion leakage, chlorophyll losses and the increases in total phenolic content and hydrophilic and lipophilic antioxidant activities in cherimoya peel for 2 weeks with respect to controls. In addition, the increases in total soluble solids and titratable acidity in flesh tissue were also delayed in melatonin-treated fruit, and there was also reduced firmness loss compared with the control, the highest effects being found for the 0.05 mM dose. This treatment led to maintenance of fruit quality traits and to increases in the storage time up to 21 days, 14 days more than the control fruit. Thus, melatonin treatment, especially at 0.05 mM concentration, could be a useful tool to decrease CI damage in cherimoya fruit, with additional effects on retarding postharvest ripening and senescence processes and on maintaining quality parameters. These effects were attributed to a delay in the climacteric ethylene production, which was delayed for 1, 2 and 3 weeks for 0.01, 0.1 and 0.05 mM doses, respectively. However, the effects of melatonin on gene expression and the activity of the enzymes involved in ethylene production deserves further research.
Zucchini fruit are highly sensitive to low temperatures leading to significant peel depressions, increasing weight loss and making them impossible to be commercialized. In this study the effect on the reduction of chilling injury (CI) assaying different postharvest treatments to cv. Cronos was evaluated. We have compared the application of substances such as 1-methylcyclopropene (1-MCP) with the application of a natural origin compound as melatonin (MT), both with demonstrated activity against CI in different vegetal products. The effects of MT (1 mM) by dipping treatment of 1 h and 1-MCP (2400 ppb) have been evaluated on zucchini fruit during 15 days of storage at 4 °C plus 2 days at 20 °C. Treatments applied independently improved some fruit quality parameters in comparison with control fruit but were not able to manage CI even though they mitigated the impact on several parameters. However, when these two separated strategies were combined, zucchini cold tolerance increased with a synergic trend. This synergic effect affected in general all parameters but specially CI, being also the only lot in which zucchini fruit were most effectively preserved. This is the first evidence in which a clear positive effect on zucchini chilling tolerance has been obtained combining these two different strategies. In this sense, the combined effect of 1-MCP and MT could be a suitable tool to reach high quality standards and increasing shelf life under suboptimal temperatures.
Kiwifruit, like many other fruits, is susceptible to dehydration, leading to texture changes and a loss of flavour during storage. Exposing kiwifruit to suboptimal temperatures can control these changes but can cause internal browning. Postharvest treatments with substances such as 1-methylcyclopropene (1-MCP) are some of the most successful commercial technologies in the conservation of fruits and vegetables. In recent years, there has been a growing interest among researchers in alternative technologies based in postharvest treatments with plant growth regulators. In this sense, melatonin (MT) has been shown to improve fruit quality, extending shelf life. The aim of this study was to compare these two different technologies applied at postharvest to evaluate the impact on kiwifruit quality. Optimal 1-MCP fumigations and MT solutions were assayed on ‘Hayward’ kiwifruit under similar conditions. Quality parameters were evaluated at 14-day intervals during 84 days of cold storage plus 5 days at 20 °C. The results showed that both treatments were similarly effective in maintaining quality parameters such as weight loss, respiration, firmness, and acidity. Although 1-MCP treatments delayed the evolution of kiwifruit colour and chlorophyll degradation as compared to MT, MT treatments controlled chilling injury better than 1-MCP. This effect was not related to a greater cell membrane integrity since fruit batches treated with 1-MCP were the ones that showed the lowest electrolyte leakage level. In conclusion, both treatments maintained fruit quality and delayed ripening in a similar way. In this sense, the results suggest that MT immersion treatments could act as efficient delaying senescence as fumigations with 1-MCP maintaining kiwifruit quality during refrigerated storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.