Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities.
This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6–14.5 g L-1 eq. CO32-, i.e. 160–220 mM compare to around 2–2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 μg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was found responsible for almost all photosynthetic primary production.
We used the flow sorting capacities of a benchtop FACSCalibur flow cytometer to analyze the phytoplankton community of four different aquatic ecosystems. We show that despite the high optical, mechanistic, and hydrodynamic stress for the cells while sorted, most of the targeted populations could be isolated and grew in mixed culture media subsequent to sorting. Forty-five phytoplankton taxa were isolated, including green algae (29 species), cyanobacteria (eight), diatoms (seven), and cryptomonads (one). The isolation success average was high since 80% of the total sorted populations grew successfully and 47% constituted monocultures. It is noteworthy, however, that some groups could not be isolated, as for example colonial cyanobacteria, chrysophytes, euglenophytes, desmids, or dinoflagellates, and some species such as Cryptomonas sp. were very sensitive to the sorting process. It is proposed that flow cytometric analysis of freshwater phytoplankton might be a relevant tool for water managers and could be applied in some specific cases, such as early monitoring of blooming taxa or basic bio-monitorings of key species. The higher isolation average obtained from the flow sorting can also be powerful for the physiological or molecular study of some taxa after their cultivation.
Biological elements, including phytoplankton, phytobenthos, macrophytes, benthic invertebrates and fish, are employed by the EU Water Framework Directive (WFD) 2000/60/EC as ecological indicators for the assessment of surface waters. The use of primary producers (phytoplankton, phytobenthos and macrophytes) for water quality assessment has a long history, and several methods have been developed worldwide. In this study, we used these three communities to assess the ecological status of five natural lakes located in the Aquitaine region (southwest France). Several biological indices used in lakes from other European countries or in French rivers were employed and compared among the three communities. Each primary producer provided complementary information about the ecological status of the lakes, including the invasiveness of exotic taxa. Regardless of the producer community used, the response to the environment, as reflected by the indices (adequate for each community), was similar: Lakes Cazaux, Lacanau and Hourtin showed the best ecological status and Parentis and Soustons the worst. Phytoplankton diagnosis reflected and integrated unambiguously the water quality of the lakes, as demonstrated by the strong relationships between the phytoplankton index and the trophic status criteria. This community appeared as the best indicator, especially when macrophytes were absent. The methods applied here represent a potential tool for the assessment of the ecological status in the context of WFD, but they need to be refined. We propose modifications for phytobenthos index initially tailored for running waters for adequate use in lentic ecosystems. Indices for the three primary producers should be modified to incorporate exotic species which may provide information on potential biodiversity losses.
The saline-alkaline crater-lake Dziani Dzaha (Mayotte, Indian Ocean) is dominated by the bloom-forming cyanobacterium Arthrospira. However, the rest of the phototrophic community remains underexplored because of their minute dimension or lower biomass. To characterize the phototrophic microorganisms living in this ecosystem considered as a modern analog of Precambrian environments, several strains were isolated from the water column and stromatolites and analyzed using the polyphasic approach. Based on morphological, ultrastructural and molecular (16S rRNA gene, 18S rRNA gene, 16S-23S internal transcribed spacer (ITS) region and cpcBA-IGS locus) methods, seven filamentous cyanobacteria and the prasinophyte Picocystis salinarum were identified. Two new genera and four new cyanobacteria species belonging to the orders Oscillatoriales (Desertifilum dzianense sp. nov.) and Synechococcales (Sodalinema komarekii gen. nov., sp. nov., Sodaleptolyngbya stromatolitii gen. nov., sp. nov. and Haloleptolyngbya elongata sp. nov.) were described. This approach also allowed to identify Arthrospira fusiformis with exclusively straight trichomes instead of the spirally coiled form commonly observed in the genus. This study evidenced the importance of using the polyphasic approach to solve the complex taxonomy of cyanobacteria and to study algal assemblages from unexplored ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.