Recent theoretical considerations have highlighted the importance of the pelagic-benthic coupling in marine food webs. In continental shelf seas, it was hypothesized that the trophic network structure may change along an inshore-offshore gradient due to weakening of the pelagic-benthic coupling from coastal to offshore areas. We tested this assumption empirically using the eastern English Channel (EEC) as a case study. We sampled organisms from particulate organic matter to predatory fishes and used baseline-corrected carbon and nitrogen stable isotope ratios (δ13C and δ15N) to determine their trophic position. First, hierarchical clustering on δ13C and δ15N coupled to bootstrapping and estimates of the relative contribution of pelagic and benthic carbon sources to consumers' diet showed that, at mesoscale, the EEC food web forms a continuum of four trophic levels with trophic groups spread across a pelagic and a benthic trophic pathway. Second, based on the same methods, a discrete approach examined changes in the local food web structure across three depth strata in order to investigate the inshore-offshore gradient. It showed stronger pelagic-benthic coupling in shallow coastal areas mostly due to a reorganization of the upper consumers relative to the two trophic pathways, benthic carbon sources being available to pelagic consumers and, reciprocally, pelagic sources becoming accessible to benthic species. Third a continuous approach examined changes in the mean and variance of upper consumers' δ13C and δ15N with depth. It detected a significant decrease in δ13C variance and a significant increase in δ15N variance as depth increases. A theoretical two-source mixing model showed that an inshore-offshore decrease in the pelagic-benthic coupling was a sufficient Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site. condition to produce the δ13C variance pattern, thus supporting the conclusions of the discrete approach. These results suggest that environmental gradients such as the inshore-offshore one should be accounted for to better understand marine food webs dynamics. Highlights ► Marine food web is reorganized along a seaward gradient in the English Channel. ►Stronger coupling of the pelagic and benthic pathways from offshore to the coast. ►Shift of pelagic predators to the benthic pathway in shallow areas. ►Adaptive foraging of pelagic predators may explain food web reorganization.
This study investigated and compared asymmetry in sagittal otolith shape and length between left and right inner ears in four roundfish and four flatfish species of commercial interest. For each species, the effects of ontogenetic changes (individual age and total body length), sexual dimorphism (individual sex) and the otolith's location on the right or left side of the head, on the shape and length of paired otoliths (between 143 and 702 pairs according to species) were evaluated. Ontogenetic changes in otolith shape and length were observed for all species. Sexual dimorphism, either in otolith shape and length or in their ontogenetic changes, was detected for half of the species, be they round or flat. Significant directional asymmetry in otolith shape and length was detected in one roundfish species each, but its inconsistency across species and its small average amplitude (6·17% for shape and 1·99% for length) suggested that it has barely any biological relevance. Significant directional asymmetry in otolith shape and length was found for all flatfish species except otolith length for one species. Its average amplitude varied between 2·06 and 17·50% for shape and between 0·00 and 11·83% for length and increased significantly throughout ontogeny for two species, one dextral and one sinistral. The longer (length) and rounder otolith (shape) appeared to be always on the blind side whatever the species. These results suggest differential biomineralization between the blind and ocular inner ears in flatfish species that could result from perturbations of the proximal-distal gradient of otolith precursors in the endolymph and the otolith position relative to the geometry of the saccular epithelium due to body morphology asymmetry and lateralized behaviour. The fact that asymmetry never exceeded 18% even at the individual level suggests an evolutionary canalization of otolith shape symmetry to avoid negative effects on fish hearing and balance. Technically, asymmetry should be accounted for in future studies based on otolith shape.
A comparative study of the Ébrié lagoon (Ivory Coast) and Lake Nokoué (Benin) was made based on ecotrophic model outputs that describe each system's structure and functioning. Two models were constructed using the Ecopath software to differentiate main biomass flows in the systems.Results indicate that biomasses and productions in both ecosystems are concentrated in trophic levels (TL) 2 and 3. Higher TL biomasses and productions in Lake Nokoué compared to Ébrié lagoon may be explained by the presence of acadjas. High production per biomass (P/B) and food consumption per biomass (Q/B) values indicate the high productivity of these systems and the abundance of juveniles in most groups which utilize these systems as refuge zones and nurseries. The difference, however, lies between the principal source of energy and how it is incorporated in the food web of each ecosystem. Lake Nokoué is a detritus-driven ecosystem while Ébrié lagoon is dominated by the phytoplankton pathway. System indicators suggest different levels of ecosystem stability and maturity. Relevance of other observations on ecosystem functioning and indicators in relation to perturbation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.