In recent years, the presence of pharmaceutically active compounds (PhACs) in surface waters and wastewaters has b the effectiveness of conventional water treatment methods. Towards this direction, advanced oxidation processes (AOPs) for the complete elimination of micro pollutants in waters have become an emerging area of research. The present study reports the heterogeneous activation of sodium persulfate (SPS) by LaNiO3 (LNO) perovskite oxide for the degradation of sulfamethoxazole (SMX), an antibiotic agent. LNO was prepared according to a combustion method, and its physicochemical characteristics were identified by means of XRD, BET, TEM, and SEM/EDS. SMX degradation results showed the great efficiency of LNO for SPS activation. Increasing LNO and SPS dosage up to 250 mg/L enhanced the SMX degradation. In contrast, increasing SMX concentration resulted in longer time periods for its degradation. Considering the pH effect, SMX removal was obstructed under basic conditions, while the efficiency was enhanced at near-neutral conditions. The present system’s activity was also tested for piroxicam (PIR) and methylparaben (MeP) degradation, showing promising results. Unfortunately, experiments conducted in real water matrices such as bottled water (BW) and wastewater (WW), showed that SMX removal was limited to less than 25% in both cases. The hindering effects were mainly attributed to bicarbonate ions and organic matter present in aqueous media. The results obtained using suitable radical scavengers revealed the contribution of both hydroxyl and sulfate radicals in degradation reactions. Finally, LNO exhibited good stability under consecutive experimental runs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.