The role of cell surface hydrophobicity in the adhesion to stainless steel (SS) of 11 wild yeast strains isolated from the ultrafiltration membranes of an apple juice processing plant was investigated. The isolated yeasts belonged to four species: Candida krusei (5 isolates), Candida tropicalis (2 isolates), Kluyveromyces marxianus (3 isolates) and Rhodotorula mucilaginosa (1 isolate). Surface hydrophobicity was measured by the microbial adhesion to solvents method. Yeast cells and surfaces were incubated in apple juice and temporal measurements of the numbers of adherent cells were made. Ten isolates showed moderate to high hydrophobicity and 1 strain was hydrophilic. The hydrophobicity expressed by the yeast surfaces correlated positively with the rate of adhesion of each strain. These results indicated that cell surface hydrophobicity governs the initial attachment of the studied yeast strains to SS surfaces common to apple juice processing plants.
The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.